1
0
Fork 0
mirror of https://github.com/git/git.git synced 2024-10-31 14:27:54 +01:00
Commit graph

6 commits

Author SHA1 Message Date
René Scharfe
0eb0fb889e sha1-lookup: handle duplicates in sha1_pos()
If the first 18 bytes of the SHA1's of all entries are the same then
sha1_pos() dies and reports that the lower and upper limits of the
binary search were the same that this wasn't supposed to happen.  This
is wrong because the remaining two bytes could still differ.

Furthermore: It wouldn't be a problem if they actually were the same,
i.e. if all entries have the same SHA1.  The code already handles
duplicates just fine.  Simply remove the erroneous check.

Signed-off-by: Rene Scharfe <l.s.r@web.de>
Acked-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-10-01 13:32:19 -07:00
Jeff King
171bdaca69 sha1-lookup: handle duplicate keys with GIT_USE_LOOKUP
The sha1_entry_pos function tries to be smart about
selecting the middle of a range for its binary search by
looking at the value differences between the "lo" and "hi"
constraints. However, it is unable to cope with entries with
duplicate keys in the sorted list.

We may hit a point in the search where both our "lo" and
"hi" point to the same key. In this case, the range of
values between our endpoints is 0, and trying to scale the
difference between our key and the endpoints over that range
is undefined (i.e., divide by zero). The current code
catches this with an "assert(lov < hiv)".

Moreover, after seeing that the first 20 byte of the key are
the same, we will try to establish a value from the 21st
byte. Which is nonsensical.

Instead, we can detect the case that we are in a run of
duplicates, and simply do a final comparison against any one
of them (since they are all the same, it does not matter
which). If the keys match, we have found our entry (or one
of them, anyway).  If not, then we know that we do not need
to look further, as we must be in a run of the duplicate
key.

Signed-off-by: Jeff King <peff@peff.net>
Acked-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-08-24 22:31:20 -07:00
Junio C Hamano
1a7b1f6b9c sha1-lookup: fix up the assertion message
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-04-06 00:56:27 -07:00
Christian Couder
96beef8c2e sha1-lookup: add new "sha1_pos" function to efficiently lookup sha1
This function has been copied from the "patch_pos" function in
"patch-ids.c" but an additional parameter has been added.

The new parameter is a function pointer, that is used to access the
sha1 of an element in the table.

Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-04-04 22:57:39 -07:00
Junio C Hamano
12ecb01107 sha1-lookup: make selection of 'middle' less aggressive
If we pick 'mi' between 'lo' and 'hi' at 50%, which was what the
simple binary search did, we are halving the search space
whether the entry at 'mi' is lower or higher than the target.

The previous patch was about picking not the middle but closer
to 'hi', when we know the target is a lot closer to 'hi' than it
is to 'lo'.  However, if it turns out that the entry at 'mi' is
higher than the target, we would end up reducing the search
space only by the difference between 'mi' and 'hi' (which by
definition is less than 50% --- that was the whole point of not
using the simple binary search), which made the search less
efficient.  And the risk of overshooting becomes very high, if
we try to be too precise.

This tweaks the selection of 'mi' to be a bit closer to the
middle than we would otherwise pick to avoid the problem.

Signed-off-by: Junio C Hamano <gitster@pobox.com>
2008-04-09 01:30:18 -07:00
Junio C Hamano
628522ec14 sha1-lookup: more memory efficient search in sorted list of SHA-1
Currently, when looking for a packed object from the pack idx, a
simple binary search is used.

A conventional binary search loop looks like this:

        unsigned lo, hi;
        do {
                unsigned mi = (lo + hi) / 2;
                int cmp = "entry pointed at by mi" minus "target";
                if (!cmp)
                        return mi; "mi is the wanted one"
                if (cmp > 0)
                        hi = mi; "mi is larger than target"
                else
                        lo = mi+1; "mi is smaller than target"
        } while (lo < hi);
	"did not find what we wanted"

The invariants are:

  - When entering the loop, 'lo' points at a slot that is never
    above the target (it could be at the target), 'hi' points at
    a slot that is guaranteed to be above the target (it can
    never be at the target).

  - We find a point 'mi' between 'lo' and 'hi' ('mi' could be
    the same as 'lo', but never can be as high as 'hi'), and
    check if 'mi' hits the target.  There are three cases:

     - if it is a hit, we have found what we are looking for;

     - if it is strictly higher than the target, we set it to
       'hi', and repeat the search.

     - if it is strictly lower than the target, we update 'lo'
       to one slot after it, because we allow 'lo' to be at the
       target and 'mi' is known to be below the target.

    If the loop exits, there is no matching entry.

When choosing 'mi', we do not have to take the "middle" but
anywhere in between 'lo' and 'hi', as long as lo <= mi < hi is
satisfied.  When we somehow know that the distance between the
target and 'lo' is much shorter than the target and 'hi', we
could pick 'mi' that is much closer to 'lo' than (hi+lo)/2,
which a conventional binary search would pick.

This patch takes advantage of the fact that the SHA-1 is a good
hash function, and as long as there are enough entries in the
table, we can expect uniform distribution.  An entry that begins
with for example "deadbeef..." is much likely to appear much
later than in the midway of a reasonably populated table.  In
fact, it can be expected to be near 87% (222/256) from the top
of the table.

This is a work-in-progress and has switches to allow easier
experiments and debugging.  Exporting GIT_USE_LOOKUP environment
variable enables this code.

On my admittedly memory starved machine, with a partial KDE
repository (3.0G pack with 95M idx):

    $ GIT_USE_LOOKUP=t git log -800 --stat HEAD >/dev/null
    3.93user 0.16system 0:04.09elapsed 100%CPU (0avgtext+0avgdata 0maxresident)k
    0inputs+0outputs (0major+55588minor)pagefaults 0swaps

Without the patch, the numbers are:

    $ git log -800 --stat HEAD >/dev/null
    4.00user 0.15system 0:04.17elapsed 99%CPU (0avgtext+0avgdata 0maxresident)k
    0inputs+0outputs (0major+60258minor)pagefaults 0swaps

In the same repository:

    $ GIT_USE_LOOKUP=t git log -2000 HEAD >/dev/null
    0.12user 0.00system 0:00.12elapsed 97%CPU (0avgtext+0avgdata 0maxresident)k
    0inputs+0outputs (0major+4241minor)pagefaults 0swaps

Without the patch, the numbers are:

    $ git log -2000 HEAD >/dev/null
    0.05user 0.01system 0:00.07elapsed 100%CPU (0avgtext+0avgdata 0maxresident)k
    0inputs+0outputs (0major+8506minor)pagefaults 0swaps

There isn't much time difference, but the number of minor faults
seems to show that we are touching much smaller number of pages,
which is expected.

Signed-off-by: Junio C Hamano <gitster@pobox.com>
2008-04-09 01:23:52 -07:00