/* Copyright 2020 Google LLC Use of this source code is governed by a BSD-style license that can be found in the LICENSE file or at https://developers.google.com/open-source/licenses/bsd */ #include "reader.h" #include "system.h" #include "block.h" #include "constants.h" #include "iter.h" #include "record.h" #include "reftable-error.h" uint64_t block_source_size(struct reftable_block_source *source) { return source->ops->size(source->arg); } int block_source_read_block(struct reftable_block_source *source, struct reftable_block *dest, uint64_t off, uint32_t size) { int result = source->ops->read_block(source->arg, dest, off, size); dest->source = *source; return result; } void block_source_close(struct reftable_block_source *source) { if (!source->ops) { return; } source->ops->close(source->arg); source->ops = NULL; } static struct reftable_reader_offsets * reader_offsets_for(struct reftable_reader *r, uint8_t typ) { switch (typ) { case BLOCK_TYPE_REF: return &r->ref_offsets; case BLOCK_TYPE_LOG: return &r->log_offsets; case BLOCK_TYPE_OBJ: return &r->obj_offsets; } abort(); } static int reader_get_block(struct reftable_reader *r, struct reftable_block *dest, uint64_t off, uint32_t sz) { if (off >= r->size) return 0; if (off + sz > r->size) { sz = r->size - off; } return block_source_read_block(&r->source, dest, off, sz); } uint32_t reftable_reader_hash_id(struct reftable_reader *r) { return r->hash_id; } const char *reader_name(struct reftable_reader *r) { return r->name; } static int parse_footer(struct reftable_reader *r, uint8_t *footer, uint8_t *header) { uint8_t *f = footer; uint8_t first_block_typ; int err = 0; uint32_t computed_crc; uint32_t file_crc; if (memcmp(f, "REFT", 4)) { err = REFTABLE_FORMAT_ERROR; goto done; } f += 4; if (memcmp(footer, header, header_size(r->version))) { err = REFTABLE_FORMAT_ERROR; goto done; } f++; r->block_size = get_be24(f); f += 3; r->min_update_index = get_be64(f); f += 8; r->max_update_index = get_be64(f); f += 8; if (r->version == 1) { r->hash_id = GIT_SHA1_FORMAT_ID; } else { r->hash_id = get_be32(f); switch (r->hash_id) { case GIT_SHA1_FORMAT_ID: break; case GIT_SHA256_FORMAT_ID: break; default: err = REFTABLE_FORMAT_ERROR; goto done; } f += 4; } r->ref_offsets.index_offset = get_be64(f); f += 8; r->obj_offsets.offset = get_be64(f); f += 8; r->object_id_len = r->obj_offsets.offset & ((1 << 5) - 1); r->obj_offsets.offset >>= 5; r->obj_offsets.index_offset = get_be64(f); f += 8; r->log_offsets.offset = get_be64(f); f += 8; r->log_offsets.index_offset = get_be64(f); f += 8; computed_crc = crc32(0, footer, f - footer); file_crc = get_be32(f); f += 4; if (computed_crc != file_crc) { err = REFTABLE_FORMAT_ERROR; goto done; } first_block_typ = header[header_size(r->version)]; r->ref_offsets.is_present = (first_block_typ == BLOCK_TYPE_REF); r->ref_offsets.offset = 0; r->log_offsets.is_present = (first_block_typ == BLOCK_TYPE_LOG || r->log_offsets.offset > 0); r->obj_offsets.is_present = r->obj_offsets.offset > 0; if (r->obj_offsets.is_present && !r->object_id_len) { err = REFTABLE_FORMAT_ERROR; goto done; } err = 0; done: return err; } struct table_iter { struct reftable_reader *r; uint8_t typ; uint64_t block_off; struct block_reader br; struct block_iter bi; int is_finished; }; static int table_iter_init(struct table_iter *ti, struct reftable_reader *r) { struct block_iter bi = BLOCK_ITER_INIT; memset(ti, 0, sizeof(*ti)); reftable_reader_incref(r); ti->r = r; ti->bi = bi; return 0; } static int table_iter_next_in_block(struct table_iter *ti, struct reftable_record *rec) { int res = block_iter_next(&ti->bi, rec); if (res == 0 && reftable_record_type(rec) == BLOCK_TYPE_REF) { rec->u.ref.update_index += ti->r->min_update_index; } return res; } static void table_iter_block_done(struct table_iter *ti) { block_reader_release(&ti->br); block_iter_reset(&ti->bi); } static int32_t extract_block_size(uint8_t *data, uint8_t *typ, uint64_t off, int version) { int32_t result = 0; if (off == 0) { data += header_size(version); } *typ = data[0]; if (reftable_is_block_type(*typ)) { result = get_be24(data + 1); } return result; } int reader_init_block_reader(struct reftable_reader *r, struct block_reader *br, uint64_t next_off, uint8_t want_typ) { int32_t guess_block_size = r->block_size ? r->block_size : DEFAULT_BLOCK_SIZE; struct reftable_block block = { NULL }; uint8_t block_typ = 0; int err = 0; uint32_t header_off = next_off ? 0 : header_size(r->version); int32_t block_size = 0; if (next_off >= r->size) return 1; err = reader_get_block(r, &block, next_off, guess_block_size); if (err < 0) goto done; block_size = extract_block_size(block.data, &block_typ, next_off, r->version); if (block_size < 0) { err = block_size; goto done; } if (want_typ != BLOCK_TYPE_ANY && block_typ != want_typ) { err = 1; goto done; } if (block_size > guess_block_size) { reftable_block_done(&block); err = reader_get_block(r, &block, next_off, block_size); if (err < 0) { goto done; } } err = block_reader_init(br, &block, header_off, r->block_size, hash_size(r->hash_id)); done: reftable_block_done(&block); return err; } static void table_iter_close(struct table_iter *ti) { table_iter_block_done(ti); block_iter_close(&ti->bi); reftable_reader_decref(ti->r); } static int table_iter_next_block(struct table_iter *ti) { uint64_t next_block_off = ti->block_off + ti->br.full_block_size; int err; err = reader_init_block_reader(ti->r, &ti->br, next_block_off, ti->typ); if (err > 0) ti->is_finished = 1; if (err) return err; ti->block_off = next_block_off; ti->is_finished = 0; block_iter_seek_start(&ti->bi, &ti->br); return 0; } static int table_iter_next(struct table_iter *ti, struct reftable_record *rec) { if (reftable_record_type(rec) != ti->typ) return REFTABLE_API_ERROR; while (1) { int err; if (ti->is_finished) return 1; /* * Check whether the current block still has more records. If * so, return it. If the iterator returns positive then the * current block has been exhausted. */ err = table_iter_next_in_block(ti, rec); if (err <= 0) return err; /* * Otherwise, we need to continue to the next block in the * table and retry. If there are no more blocks then the * iterator is drained. */ err = table_iter_next_block(ti); if (err) { ti->is_finished = 1; return err; } } } static int table_iter_seek_to(struct table_iter *ti, uint64_t off, uint8_t typ) { int err; err = reader_init_block_reader(ti->r, &ti->br, off, typ); if (err != 0) return err; ti->typ = block_reader_type(&ti->br); ti->block_off = off; block_iter_seek_start(&ti->bi, &ti->br); ti->is_finished = 0; return 0; } static int table_iter_seek_start(struct table_iter *ti, uint8_t typ, int index) { struct reftable_reader_offsets *offs = reader_offsets_for(ti->r, typ); uint64_t off = offs->offset; if (index) { off = offs->index_offset; if (off == 0) { return 1; } typ = BLOCK_TYPE_INDEX; } return table_iter_seek_to(ti, off, typ); } static int table_iter_seek_linear(struct table_iter *ti, struct reftable_record *want) { struct strbuf want_key = STRBUF_INIT; struct strbuf got_key = STRBUF_INIT; struct reftable_record rec; int err; reftable_record_init(&rec, reftable_record_type(want)); reftable_record_key(want, &want_key); /* * First we need to locate the block that must contain our record. To * do so we scan through blocks linearly until we find the first block * whose first key is bigger than our wanted key. Once we have found * that block we know that the key must be contained in the preceding * block. * * This algorithm is somewhat unfortunate because it means that we * always have to seek one block too far and then back up. But as we * can only decode the _first_ key of a block but not its _last_ key we * have no other way to do this. */ while (1) { struct table_iter next = *ti; /* * We must be careful to not modify underlying data of `ti` * because we may find that `next` does not contain our desired * block, but that `ti` does. In that case, we would discard * `next` and continue with `ti`. * * This also means that we cannot reuse allocated memory for * `next` here. While it would be great if we could, it should * in practice not be too bad given that we should only ever * end up doing linear seeks with at most three blocks. As soon * as we have more than three blocks we would have an index, so * we would not do a linear search there anymore. */ memset(&next.br.block, 0, sizeof(next.br.block)); next.br.zstream = NULL; next.br.uncompressed_data = NULL; next.br.uncompressed_cap = 0; err = table_iter_next_block(&next); if (err < 0) goto done; if (err > 0) break; err = block_reader_first_key(&next.br, &got_key); if (err < 0) goto done; if (strbuf_cmp(&got_key, &want_key) > 0) { table_iter_block_done(&next); break; } table_iter_block_done(ti); *ti = next; } /* * We have located the block that must contain our record, so we seek * the wanted key inside of it. If the block does not contain our key * we know that the corresponding record does not exist. */ err = block_iter_seek_key(&ti->bi, &ti->br, &want_key); if (err < 0) goto done; err = 0; done: reftable_record_release(&rec); strbuf_release(&want_key); strbuf_release(&got_key); return err; } static int table_iter_seek_indexed(struct table_iter *ti, struct reftable_record *rec) { struct reftable_record want_index = { .type = BLOCK_TYPE_INDEX, .u.idx = { .last_key = STRBUF_INIT } }; struct reftable_record index_result = { .type = BLOCK_TYPE_INDEX, .u.idx = { .last_key = STRBUF_INIT }, }; int err; reftable_record_key(rec, &want_index.u.idx.last_key); /* * The index may consist of multiple levels, where each level may have * multiple index blocks. We start by doing a linear search in the * highest layer that identifies the relevant index block as well as * the record inside that block that corresponds to our wanted key. */ err = table_iter_seek_linear(ti, &want_index); if (err < 0) goto done; /* * Traverse down the levels until we find a non-index entry. */ while (1) { /* * In case we seek a record that does not exist the index iter * will tell us that the iterator is over. This works because * the last index entry of the current level will contain the * last key it knows about. So in case our seeked key is larger * than the last indexed key we know that it won't exist. * * There is one subtlety in the layout of the index section * that makes this work as expected: the highest-level index is * at end of the section and will point backwards and thus we * start reading from the end of the index section, not the * beginning. * * If that wasn't the case and the order was reversed then the * linear seek would seek into the lower levels and traverse * all levels of the index only to find out that the key does * not exist. */ err = table_iter_next(ti, &index_result); if (err != 0) goto done; err = table_iter_seek_to(ti, index_result.u.idx.offset, 0); if (err != 0) goto done; err = block_iter_seek_key(&ti->bi, &ti->br, &want_index.u.idx.last_key); if (err < 0) goto done; if (ti->typ == reftable_record_type(rec)) { err = 0; break; } if (ti->typ != BLOCK_TYPE_INDEX) { err = REFTABLE_FORMAT_ERROR; goto done; } } done: reftable_record_release(&want_index); reftable_record_release(&index_result); return err; } static int table_iter_seek(struct table_iter *ti, struct reftable_record *want) { uint8_t typ = reftable_record_type(want); struct reftable_reader_offsets *offs = reader_offsets_for(ti->r, typ); int err; err = table_iter_seek_start(ti, reftable_record_type(want), !!offs->index_offset); if (err < 0) goto out; if (offs->index_offset) err = table_iter_seek_indexed(ti, want); else err = table_iter_seek_linear(ti, want); if (err) goto out; out: return err; } static int table_iter_seek_void(void *ti, struct reftable_record *want) { return table_iter_seek(ti, want); } static int table_iter_next_void(void *ti, struct reftable_record *rec) { return table_iter_next(ti, rec); } static void table_iter_close_void(void *ti) { table_iter_close(ti); } static struct reftable_iterator_vtable table_iter_vtable = { .seek = &table_iter_seek_void, .next = &table_iter_next_void, .close = &table_iter_close_void, }; static void iterator_from_table_iter(struct reftable_iterator *it, struct table_iter *ti) { assert(!it->ops); it->iter_arg = ti; it->ops = &table_iter_vtable; } int reader_init_iter(struct reftable_reader *r, struct reftable_iterator *it, uint8_t typ) { struct reftable_reader_offsets *offs = reader_offsets_for(r, typ); if (offs->is_present) { struct table_iter *ti; REFTABLE_ALLOC_ARRAY(ti, 1); if (!ti) return REFTABLE_OUT_OF_MEMORY_ERROR; table_iter_init(ti, r); iterator_from_table_iter(it, ti); } else { iterator_set_empty(it); } return 0; } int reftable_reader_init_ref_iterator(struct reftable_reader *r, struct reftable_iterator *it) { return reader_init_iter(r, it, BLOCK_TYPE_REF); } int reftable_reader_init_log_iterator(struct reftable_reader *r, struct reftable_iterator *it) { return reader_init_iter(r, it, BLOCK_TYPE_LOG); } int reftable_reader_new(struct reftable_reader **out, struct reftable_block_source *source, char const *name) { struct reftable_block footer = { 0 }; struct reftable_block header = { 0 }; struct reftable_reader *r; uint64_t file_size = block_source_size(source); uint32_t read_size; int err; REFTABLE_CALLOC_ARRAY(r, 1); if (!r) { err = REFTABLE_OUT_OF_MEMORY_ERROR; goto done; } /* * We need one extra byte to read the type of first block. We also * pretend to always be reading v2 of the format because it is larger. */ read_size = header_size(2) + 1; if (read_size > file_size) { err = REFTABLE_FORMAT_ERROR; goto done; } err = block_source_read_block(source, &header, 0, read_size); if (err != read_size) { err = REFTABLE_IO_ERROR; goto done; } if (memcmp(header.data, "REFT", 4)) { err = REFTABLE_FORMAT_ERROR; goto done; } r->version = header.data[4]; if (r->version != 1 && r->version != 2) { err = REFTABLE_FORMAT_ERROR; goto done; } r->size = file_size - footer_size(r->version); r->source = *source; r->name = reftable_strdup(name); if (!r->name) { err = REFTABLE_OUT_OF_MEMORY_ERROR; goto done; } r->hash_id = 0; r->refcount = 1; err = block_source_read_block(source, &footer, r->size, footer_size(r->version)); if (err != footer_size(r->version)) { err = REFTABLE_IO_ERROR; goto done; } err = parse_footer(r, footer.data, header.data); if (err) goto done; *out = r; done: reftable_block_done(&footer); reftable_block_done(&header); if (err) { reftable_free(r); block_source_close(source); } return err; } void reftable_reader_incref(struct reftable_reader *r) { if (!r->refcount) BUG("cannot increment ref counter of dead reader"); r->refcount++; } void reftable_reader_decref(struct reftable_reader *r) { if (!r) return; if (!r->refcount) BUG("cannot decrement ref counter of dead reader"); if (--r->refcount) return; block_source_close(&r->source); REFTABLE_FREE_AND_NULL(r->name); reftable_free(r); } static int reftable_reader_refs_for_indexed(struct reftable_reader *r, struct reftable_iterator *it, uint8_t *oid) { struct reftable_record want = { .type = BLOCK_TYPE_OBJ, .u.obj = { .hash_prefix = oid, .hash_prefix_len = r->object_id_len, }, }; struct reftable_iterator oit = { NULL }; struct reftable_record got = { .type = BLOCK_TYPE_OBJ, .u.obj = { 0 }, }; int err = 0; struct indexed_table_ref_iter *itr = NULL; /* Look through the reverse index. */ err = reader_init_iter(r, &oit, BLOCK_TYPE_OBJ); if (err < 0) goto done; err = iterator_seek(&oit, &want); if (err != 0) goto done; /* read out the reftable_obj_record */ err = iterator_next(&oit, &got); if (err < 0) goto done; if (err > 0 || memcmp(want.u.obj.hash_prefix, got.u.obj.hash_prefix, r->object_id_len)) { /* didn't find it; return empty iterator */ iterator_set_empty(it); err = 0; goto done; } err = indexed_table_ref_iter_new(&itr, r, oid, hash_size(r->hash_id), got.u.obj.offsets, got.u.obj.offset_len); if (err < 0) goto done; got.u.obj.offsets = NULL; iterator_from_indexed_table_ref_iter(it, itr); done: reftable_iterator_destroy(&oit); reftable_record_release(&got); return err; } static int reftable_reader_refs_for_unindexed(struct reftable_reader *r, struct reftable_iterator *it, uint8_t *oid) { struct table_iter *ti; struct filtering_ref_iterator *filter = NULL; struct filtering_ref_iterator empty = FILTERING_REF_ITERATOR_INIT; int oid_len = hash_size(r->hash_id); int err; REFTABLE_ALLOC_ARRAY(ti, 1); if (!ti) { err = REFTABLE_OUT_OF_MEMORY_ERROR; goto out; } table_iter_init(ti, r); err = table_iter_seek_start(ti, BLOCK_TYPE_REF, 0); if (err < 0) goto out; filter = reftable_malloc(sizeof(*filter)); if (!filter) { err = REFTABLE_OUT_OF_MEMORY_ERROR; goto out; } *filter = empty; strbuf_add(&filter->oid, oid, oid_len); iterator_from_table_iter(&filter->it, ti); iterator_from_filtering_ref_iterator(it, filter); err = 0; out: if (err < 0) { if (ti) table_iter_close(ti); reftable_free(ti); } return err; } int reftable_reader_refs_for(struct reftable_reader *r, struct reftable_iterator *it, uint8_t *oid) { if (r->obj_offsets.is_present) return reftable_reader_refs_for_indexed(r, it, oid); return reftable_reader_refs_for_unindexed(r, it, oid); } uint64_t reftable_reader_max_update_index(struct reftable_reader *r) { return r->max_update_index; } uint64_t reftable_reader_min_update_index(struct reftable_reader *r) { return r->min_update_index; } int reftable_reader_print_blocks(const char *tablename) { struct { const char *name; int type; } sections[] = { { .name = "ref", .type = BLOCK_TYPE_REF, }, { .name = "obj", .type = BLOCK_TYPE_OBJ, }, { .name = "log", .type = BLOCK_TYPE_LOG, }, }; struct reftable_block_source src = { 0 }; struct reftable_reader *r = NULL; struct table_iter ti = { 0 }; size_t i; int err; err = reftable_block_source_from_file(&src, tablename); if (err < 0) goto done; err = reftable_reader_new(&r, &src, tablename); if (err < 0) goto done; table_iter_init(&ti, r); printf("header:\n"); printf(" block_size: %d\n", r->block_size); for (i = 0; i < ARRAY_SIZE(sections); i++) { err = table_iter_seek_start(&ti, sections[i].type, 0); if (err < 0) goto done; if (err > 0) continue; printf("%s:\n", sections[i].name); while (1) { printf(" - length: %u\n", ti.br.block_len); printf(" restarts: %u\n", ti.br.restart_count); err = table_iter_next_block(&ti); if (err < 0) goto done; if (err > 0) break; } } done: reftable_reader_decref(r); table_iter_close(&ti); return err; }