1
0
Fork 0
mirror of https://github.com/git/git.git synced 2024-10-30 05:47:53 +01:00
git/fast-import.c
Shawn O. Pearce 463acbe1c6 Added tree and commit writing to fast-import.
The tree of the current commit can be altered by file_change commands
before the commit gets written to the pack.  The file changes are
rather primitive as they simply allow removal of a tree entry or
setting/adding a tree entry.

Currently trees and commits aren't being deltafied when written to
the pack and branch reloading from the current pack doesn't work,
so at most 5 branches can be worked with at any one time.

Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
2007-01-14 02:15:03 -05:00

1118 lines
25 KiB
C

/*
Format of STDIN stream:
stream ::= cmd*;
cmd ::= new_blob
| new_commit
| new_branch
| new_tag
;
new_blob ::= 'blob' blob_data;
new_commit ::= 'comt' ref_name author_committer_msg
file_change*
'0';
new_branch ::= 'brch' dst_ref_name src_ref_name;
dst_ref_name ::= ref_name;
src_ref_name ::= ref_name | sha1_exp;
new_tag ::= 'tagg' ref_name tag_name tagger_msg;
file_change ::= 'M' path_name hexsha1
| 'D' path_name
;
author_committer_msg ::= len32
'author' sp name '<' email '>' ts tz lf
'committer' sp name '<' email '>' ts tz lf
lf
binary_data;
tagger_msg ::= len32
'tagger' sp name '<' email '>' ts tz lf
lf
binary_data;
blob_data ::= len32 binary_data; # max len is 2^32-1
path_name ::= len32 path; # max len is PATH_MAX-1
ref_name ::= len32 ref; # max len is PATH_MAX-1
tag_name ::= len32 tag; # max len is PATH_MAX-1
sha1_exp ::= len32 sha1exp; # max len is PATH_MAX-1
len32 ::= # unsigned 32 bit value, native format;
binary_data ::= # file content, not interpreted;
sp ::= # ASCII space character;
lf ::= # ASCII newline (LF) character;
path ::= # GIT style file path, e.g. "a/b/c";
ref ::= # GIT ref name, e.g. "refs/heads/MOZ_GECKO_EXPERIMENT";
tag ::= # GIT tag name, e.g. "FIREFOX_1_5";
sha1exp ::= # Any valid GIT SHA1 expression;
hexsha1 ::= # SHA1 in hexadecimal format;
name ::= # valid GIT author/committer name;
email ::= # valid GIT author/committer email;
ts ::= # time since the epoch in seconds, ascii decimal;
tz ::= # GIT style timezone;
*/
#include "builtin.h"
#include "cache.h"
#include "object.h"
#include "blob.h"
#include "tree.h"
#include "delta.h"
#include "pack.h"
#include "refs.h"
#include "csum-file.h"
struct object_entry
{
struct object_entry *next;
unsigned long offset;
unsigned char sha1[20];
};
struct object_entry_pool
{
struct object_entry_pool *next_pool;
struct object_entry *next_free;
struct object_entry *end;
struct object_entry entries[FLEX_ARRAY]; /* more */
};
struct last_object
{
void *data;
unsigned int len;
unsigned int depth;
unsigned char sha1[20];
};
struct mem_pool
{
struct mem_pool *next_pool;
char *next_free;
char *end;
char space[FLEX_ARRAY]; /* more */
};
struct atom_str
{
struct atom_str *next_atom;
int str_len;
char str_dat[FLEX_ARRAY]; /* more */
};
struct tree_content;
struct tree_entry
{
struct tree_content *tree;
struct atom_str* name;
unsigned int mode;
unsigned char sha1[20];
};
struct tree_content
{
unsigned int entry_capacity; /* must match avail_tree_content */
unsigned int entry_count;
struct tree_entry *entries[FLEX_ARRAY]; /* more */
};
struct avail_tree_content
{
unsigned int entry_capacity; /* must match tree_content */
struct avail_tree_content *next_avail;
};
struct branch
{
struct branch *table_next_branch;
struct branch *active_next_branch;
const char *name;
unsigned long last_commit;
struct tree_entry branch_tree;
unsigned char sha1[20];
};
/* Stats and misc. counters */
static int max_depth = 10;
static unsigned long alloc_count;
static unsigned long branch_count;
static unsigned long object_count;
static unsigned long duplicate_count;
static unsigned long object_count_by_type[9];
static unsigned long duplicate_count_by_type[9];
/* Memory pools */
static size_t mem_pool_alloc = 2*1024*1024 - sizeof(struct mem_pool);
static size_t total_allocd;
static struct mem_pool *mem_pool;
/* atom management */
static unsigned int atom_table_sz = 4451;
static unsigned int atom_cnt;
static struct atom_str **atom_table;
/* The .pack file being generated */
static int pack_fd;
static unsigned long pack_offset;
static unsigned char pack_sha1[20];
/* Table of objects we've written. */
static unsigned int object_entry_alloc = 1000;
static struct object_entry_pool *blocks;
static struct object_entry *object_table[1 << 16];
/* Our last blob */
static struct last_object last_blob;
/* Tree management */
static unsigned int tree_entry_alloc = 1000;
static void *avail_tree_entry;
static unsigned int avail_tree_table_sz = 100;
static struct avail_tree_content **avail_tree_table;
/* Branch data */
static unsigned int max_active_branches = 5;
static unsigned int cur_active_branches;
static unsigned int branch_table_sz = 1039;
static struct branch **branch_table;
static struct branch *active_branches;
static void alloc_objects(int cnt)
{
struct object_entry_pool *b;
b = xmalloc(sizeof(struct object_entry_pool)
+ cnt * sizeof(struct object_entry));
b->next_pool = blocks;
b->next_free = b->entries;
b->end = b->entries + cnt;
blocks = b;
alloc_count += cnt;
}
static struct object_entry* new_object(unsigned char *sha1)
{
struct object_entry *e;
if (blocks->next_free == blocks->end)
alloc_objects(object_entry_alloc);
e = blocks->next_free++;
memcpy(e->sha1, sha1, sizeof(e->sha1));
return e;
}
static struct object_entry* find_object(unsigned char *sha1)
{
unsigned int h = sha1[0] << 8 | sha1[1];
struct object_entry *e;
for (e = object_table[h]; e; e = e->next)
if (!memcmp(sha1, e->sha1, sizeof(e->sha1)))
return e;
return NULL;
}
static struct object_entry* insert_object(unsigned char *sha1)
{
unsigned int h = sha1[0] << 8 | sha1[1];
struct object_entry *e = object_table[h];
struct object_entry *p = NULL;
while (e) {
if (!memcmp(sha1, e->sha1, sizeof(e->sha1)))
return e;
p = e;
e = e->next;
}
e = new_object(sha1);
e->next = NULL;
e->offset = 0;
if (p)
p->next = e;
else
object_table[h] = e;
return e;
}
static unsigned int hc_str(const char *s, size_t len)
{
unsigned int r = 0;
while (len-- > 0)
r = r * 31 + *s++;
return r;
}
static void* pool_alloc(size_t len)
{
struct mem_pool *p;
void *r;
for (p = mem_pool; p; p = p->next_pool)
if ((p->end - p->next_free >= len))
break;
if (!p) {
if (len >= (mem_pool_alloc/2)) {
total_allocd += len;
return xmalloc(len);
}
total_allocd += sizeof(struct mem_pool) + mem_pool_alloc;
p = xmalloc(sizeof(struct mem_pool) + mem_pool_alloc);
p->next_pool = mem_pool;
p->next_free = p->space;
p->end = p->next_free + mem_pool_alloc;
mem_pool = p;
}
r = p->next_free;
p->next_free += len;
return r;
}
static void* pool_calloc(size_t count, size_t size)
{
size_t len = count * size;
void *r = pool_alloc(len);
memset(r, 0, len);
return r;
}
static char* pool_strdup(const char *s)
{
char *r = pool_alloc(strlen(s) + 1);
strcpy(r, s);
return r;
}
static struct atom_str* to_atom(const char *s, size_t len)
{
unsigned int hc = hc_str(s, len) % atom_table_sz;
struct atom_str *c;
for (c = atom_table[hc]; c; c = c->next_atom)
if (c->str_len == len && !strncmp(s, c->str_dat, len))
return c;
c = pool_alloc(sizeof(struct atom_str) + len + 1);
c->str_len = len;
strncpy(c->str_dat, s, len);
c->str_dat[len] = 0;
c->next_atom = atom_table[hc];
atom_table[hc] = c;
atom_cnt++;
return c;
}
static struct branch* lookup_branch(const char *name)
{
unsigned int hc = hc_str(name, strlen(name)) % branch_table_sz;
struct branch *b;
for (b = branch_table[hc]; b; b = b->table_next_branch)
if (!strcmp(name, b->name))
return b;
return NULL;
}
static struct branch* new_branch(const char *name)
{
unsigned int hc = hc_str(name, strlen(name)) % branch_table_sz;
struct branch* b = lookup_branch(name);
if (b)
die("Invalid attempt to create duplicate branch: %s", name);
b = pool_calloc(1, sizeof(struct branch));
b->name = pool_strdup(name);
b->table_next_branch = branch_table[hc];
branch_table[hc] = b;
branch_count++;
return b;
}
static unsigned int hc_entries(unsigned int cnt)
{
cnt = cnt & 7 ? (cnt / 8) + 1 : cnt / 8;
return cnt < avail_tree_table_sz ? cnt : avail_tree_table_sz - 1;
}
static struct tree_content* new_tree_content(unsigned int cnt)
{
struct avail_tree_content *f, *l = NULL;
struct tree_content *t;
unsigned int hc = hc_entries(cnt);
for (f = avail_tree_table[hc]; f; l = f, f = f->next_avail)
if (f->entry_capacity >= cnt)
break;
if (f) {
if (l)
l->next_avail = f->next_avail;
else
avail_tree_table[hc] = f->next_avail;
} else {
cnt = cnt & 7 ? ((cnt / 8) + 1) * 8 : cnt;
f = pool_alloc(sizeof(*t) + sizeof(t->entries[0]) * cnt);
f->entry_capacity = cnt;
}
t = (struct tree_content*)f;
t->entry_count = 0;
return t;
}
static void release_tree_entry(struct tree_entry *e);
static void release_tree_content(struct tree_content *t)
{
struct avail_tree_content *f = (struct avail_tree_content*)t;
unsigned int hc = hc_entries(f->entry_capacity);
unsigned int i;
for (i = 0; i < t->entry_count; i++)
release_tree_entry(t->entries[i]);
f->next_avail = avail_tree_table[hc];
avail_tree_table[hc] = f;
}
static struct tree_content* grow_tree_content(
struct tree_content *t,
int amt)
{
struct tree_content *r = new_tree_content(t->entry_count + amt);
r->entry_count = t->entry_count;
memcpy(r->entries,t->entries,t->entry_count*sizeof(t->entries[0]));
release_tree_content(t);
return r;
}
static struct tree_entry* new_tree_entry()
{
struct tree_entry *e;
if (!avail_tree_entry) {
unsigned int n = tree_entry_alloc;
avail_tree_entry = e = xmalloc(n * sizeof(struct tree_entry));
while (n--) {
*((void**)e) = e + 1;
e++;
}
}
e = avail_tree_entry;
avail_tree_entry = *((void**)e);
return e;
}
static void release_tree_entry(struct tree_entry *e)
{
if (e->tree)
release_tree_content(e->tree);
*((void**)e) = avail_tree_entry;
avail_tree_entry = e;
}
static void yread(int fd, void *buffer, size_t length)
{
ssize_t ret = 0;
while (ret < length) {
ssize_t size = xread(fd, (char *) buffer + ret, length - ret);
if (!size)
die("Read from descriptor %i: end of stream", fd);
if (size < 0)
die("Read from descriptor %i: %s", fd, strerror(errno));
ret += size;
}
}
static int optional_read(int fd, void *buffer, size_t length)
{
ssize_t ret = 0;
while (ret < length) {
ssize_t size = xread(fd, (char *) buffer + ret, length - ret);
if (!size && !ret)
return 1;
if (!size)
die("Read from descriptor %i: end of stream", fd);
if (size < 0)
die("Read from descriptor %i: %s", fd, strerror(errno));
ret += size;
}
return 0;
}
static void ywrite(int fd, void *buffer, size_t length)
{
ssize_t ret = 0;
while (ret < length) {
ssize_t size = xwrite(fd, (char *) buffer + ret, length - ret);
if (!size)
die("Write to descriptor %i: end of file", fd);
if (size < 0)
die("Write to descriptor %i: %s", fd, strerror(errno));
ret += size;
}
}
static const char* read_path()
{
static char sn[PATH_MAX];
unsigned long slen;
yread(0, &slen, 4);
if (!slen)
die("Expected string command parameter, didn't find one");
if (slen > (PATH_MAX - 1))
die("Can't handle excessive string length %lu", slen);
yread(0, sn, slen);
sn[slen] = 0;
return sn;
}
static unsigned long encode_header(
enum object_type type,
unsigned long size,
unsigned char *hdr)
{
int n = 1;
unsigned char c;
if (type < OBJ_COMMIT || type > OBJ_DELTA)
die("bad type %d", type);
c = (type << 4) | (size & 15);
size >>= 4;
while (size) {
*hdr++ = c | 0x80;
c = size & 0x7f;
size >>= 7;
n++;
}
*hdr = c;
return n;
}
static int store_object(
enum object_type type,
void *dat,
unsigned long datlen,
struct last_object *last,
unsigned char *sha1out)
{
void *out, *delta;
struct object_entry *e;
unsigned char hdr[96];
unsigned char sha1[20];
unsigned long hdrlen, deltalen;
SHA_CTX c;
z_stream s;
hdrlen = sprintf((char*)hdr,"%s %lu",type_names[type],datlen) + 1;
SHA1_Init(&c);
SHA1_Update(&c, hdr, hdrlen);
SHA1_Update(&c, dat, datlen);
SHA1_Final(sha1, &c);
if (sha1out)
memcpy(sha1out, sha1, sizeof(sha1));
e = insert_object(sha1);
if (e->offset) {
duplicate_count++;
duplicate_count_by_type[type]++;
return 1;
}
e->offset = pack_offset;
object_count++;
object_count_by_type[type]++;
if (last && last->data && last->depth < max_depth)
delta = diff_delta(last->data, last->len,
dat, datlen,
&deltalen, 0);
else
delta = 0;
memset(&s, 0, sizeof(s));
deflateInit(&s, zlib_compression_level);
if (delta) {
last->depth++;
s.next_in = delta;
s.avail_in = deltalen;
hdrlen = encode_header(OBJ_DELTA, deltalen, hdr);
ywrite(pack_fd, hdr, hdrlen);
ywrite(pack_fd, last->sha1, sizeof(sha1));
pack_offset += hdrlen + sizeof(sha1);
} else {
if (last)
last->depth = 0;
s.next_in = dat;
s.avail_in = datlen;
hdrlen = encode_header(type, datlen, hdr);
ywrite(pack_fd, hdr, hdrlen);
pack_offset += hdrlen;
}
s.avail_out = deflateBound(&s, s.avail_in);
s.next_out = out = xmalloc(s.avail_out);
while (deflate(&s, Z_FINISH) == Z_OK)
/* nothing */;
deflateEnd(&s);
ywrite(pack_fd, out, s.total_out);
pack_offset += s.total_out;
free(out);
if (delta)
free(delta);
if (last) {
if (last->data)
free(last->data);
last->data = dat;
last->len = datlen;
memcpy(last->sha1, sha1, sizeof(sha1));
}
return 0;
}
static const char *get_mode(const char *str, unsigned int *modep)
{
unsigned char c;
unsigned int mode = 0;
while ((c = *str++) != ' ') {
if (c < '0' || c > '7')
return NULL;
mode = (mode << 3) + (c - '0');
}
*modep = mode;
return str;
}
static void load_tree(struct tree_entry *root)
{
struct object_entry *myoe;
struct tree_content *t;
unsigned long size;
char *buf;
const char *c;
char type[20];
root->tree = t = new_tree_content(8);
if (!memcmp(root->sha1, null_sha1, 20))
return;
myoe = find_object(root->sha1);
if (myoe) {
die("FIXME");
} else {
buf = read_sha1_file(root->sha1, type, &size);
if (!buf || strcmp(type, tree_type))
die("Can't load existing tree %s", sha1_to_hex(root->sha1));
}
c = buf;
while (c != (buf + size)) {
struct tree_entry *e = new_tree_entry();
if (t->entry_count == t->entry_capacity)
root->tree = t = grow_tree_content(t, 8);
t->entries[t->entry_count++] = e;
e->tree = NULL;
c = get_mode(c, &e->mode);
if (!c)
die("Corrupt mode in %s", sha1_to_hex(root->sha1));
e->name = to_atom(c, strlen(c));
c += e->name->str_len + 1;
memcpy(e->sha1, c, sizeof(e->sha1));
c += 20;
}
free(buf);
}
static int tecmp (const void *_a, const void *_b)
{
struct tree_entry *a = *((struct tree_entry**)_a);
struct tree_entry *b = *((struct tree_entry**)_b);
return base_name_compare(
a->name->str_dat, a->name->str_len, a->mode,
b->name->str_dat, b->name->str_len, b->mode);
}
static void store_tree(struct tree_entry *root)
{
struct tree_content *t = root->tree;
unsigned int i;
size_t maxlen;
char *buf, *c;
if (memcmp(root->sha1, null_sha1, 20))
return;
maxlen = 0;
for (i = 0; i < t->entry_count; i++) {
maxlen += t->entries[i]->name->str_len + 34;
if (t->entries[i]->tree)
store_tree(t->entries[i]);
}
qsort(t->entries, t->entry_count, sizeof(t->entries[0]), tecmp);
buf = c = xmalloc(maxlen);
for (i = 0; i < t->entry_count; i++) {
struct tree_entry *e = t->entries[i];
c += sprintf(c, "%o", e->mode);
*c++ = ' ';
strcpy(c, e->name->str_dat);
c += e->name->str_len + 1;
memcpy(c, e->sha1, 20);
c += 20;
}
store_object(OBJ_TREE, buf, c - buf, NULL, root->sha1);
free(buf);
}
static int tree_content_set(
struct tree_entry *root,
const char *p,
const unsigned char *sha1,
const unsigned int mode)
{
struct tree_content *t = root->tree;
const char *slash1;
unsigned int i, n;
struct tree_entry *e;
slash1 = strchr(p, '/');
if (slash1)
n = slash1 - p;
else
n = strlen(p);
for (i = 0; i < t->entry_count; i++) {
e = t->entries[i];
if (e->name->str_len == n && !strncmp(p, e->name->str_dat, n)) {
if (!slash1) {
if (e->mode == mode && !memcmp(e->sha1, sha1, 20))
return 0;
e->mode = mode;
memcpy(e->sha1, sha1, 20);
if (e->tree) {
release_tree_content(e->tree);
e->tree = NULL;
}
memcpy(root->sha1, null_sha1, 20);
return 1;
}
if (!S_ISDIR(e->mode)) {
e->tree = new_tree_content(8);
e->mode = 040000;
}
if (!e->tree)
load_tree(e);
if (tree_content_set(e, slash1 + 1, sha1, mode)) {
memcpy(root->sha1, null_sha1, 20);
return 1;
}
return 0;
}
}
if (t->entry_count == t->entry_capacity)
root->tree = t = grow_tree_content(t, 8);
e = new_tree_entry();
e->name = to_atom(p, n);
t->entries[t->entry_count++] = e;
if (slash1) {
e->tree = new_tree_content(8);
e->mode = 040000;
tree_content_set(e, slash1 + 1, sha1, mode);
} else {
e->tree = NULL;
e->mode = mode;
memcpy(e->sha1, sha1, 20);
}
memcpy(root->sha1, null_sha1, 20);
return 1;
}
static int tree_content_remove(struct tree_entry *root, const char *p)
{
struct tree_content *t = root->tree;
const char *slash1;
unsigned int i, n;
struct tree_entry *e;
slash1 = strchr(p, '/');
if (slash1)
n = slash1 - p;
else
n = strlen(p);
for (i = 0; i < t->entry_count; i++) {
e = t->entries[i];
if (e->name->str_len == n && !strncmp(p, e->name->str_dat, n)) {
if (!slash1 || !S_ISDIR(e->mode))
goto del_entry;
if (!e->tree)
load_tree(e);
if (tree_content_remove(e, slash1 + 1)) {
if (!e->tree->entry_count)
goto del_entry;
memcpy(root->sha1, null_sha1, 20);
return 1;
}
return 0;
}
}
return 0;
del_entry:
for (i++; i < t->entry_count; i++)
t->entries[i-1] = t->entries[i];
t->entry_count--;
release_tree_entry(e);
memcpy(root->sha1, null_sha1, 20);
return 1;
}
static void init_pack_header()
{
const char* magic = "PACK";
unsigned long version = 3;
unsigned long zero = 0;
version = htonl(version);
ywrite(pack_fd, (char*)magic, 4);
ywrite(pack_fd, &version, 4);
ywrite(pack_fd, &zero, 4);
pack_offset = 4 * 3;
}
static void fixup_header_footer()
{
SHA_CTX c;
char hdr[8];
unsigned long cnt;
char *buf;
size_t n;
if (lseek(pack_fd, 0, SEEK_SET) != 0)
die("Failed seeking to start: %s", strerror(errno));
SHA1_Init(&c);
yread(pack_fd, hdr, 8);
SHA1_Update(&c, hdr, 8);
cnt = htonl(object_count);
SHA1_Update(&c, &cnt, 4);
ywrite(pack_fd, &cnt, 4);
buf = xmalloc(128 * 1024);
for (;;) {
n = xread(pack_fd, buf, 128 * 1024);
if (n <= 0)
break;
SHA1_Update(&c, buf, n);
}
free(buf);
SHA1_Final(pack_sha1, &c);
ywrite(pack_fd, pack_sha1, sizeof(pack_sha1));
}
static int oecmp (const void *_a, const void *_b)
{
struct object_entry *a = *((struct object_entry**)_a);
struct object_entry *b = *((struct object_entry**)_b);
return memcmp(a->sha1, b->sha1, sizeof(a->sha1));
}
static void write_index(const char *idx_name)
{
struct sha1file *f;
struct object_entry **idx, **c, **last;
struct object_entry *e;
struct object_entry_pool *o;
unsigned int array[256];
int i;
/* Build the sorted table of object IDs. */
idx = xmalloc(object_count * sizeof(struct object_entry*));
c = idx;
for (o = blocks; o; o = o->next_pool)
for (e = o->entries; e != o->next_free; e++)
*c++ = e;
last = idx + object_count;
qsort(idx, object_count, sizeof(struct object_entry*), oecmp);
/* Generate the fan-out array. */
c = idx;
for (i = 0; i < 256; i++) {
struct object_entry **next = c;;
while (next < last) {
if ((*next)->sha1[0] != i)
break;
next++;
}
array[i] = htonl(next - idx);
c = next;
}
f = sha1create("%s", idx_name);
sha1write(f, array, 256 * sizeof(int));
for (c = idx; c != last; c++) {
unsigned int offset = htonl((*c)->offset);
sha1write(f, &offset, 4);
sha1write(f, (*c)->sha1, sizeof((*c)->sha1));
}
sha1write(f, pack_sha1, sizeof(pack_sha1));
sha1close(f, NULL, 1);
free(idx);
}
static void dump_branches()
{
static const char *msg = "fast-import";
unsigned int i;
struct branch *b;
struct ref_lock *lock;
for (i = 0; i < branch_table_sz; i++) {
for (b = branch_table[i]; b; b = b->table_next_branch) {
lock = lock_any_ref_for_update(b->name, NULL, 0);
if (!lock || write_ref_sha1(lock, b->sha1, msg) < 0)
die("Can't write %s", b->name);
}
}
}
static void cmd_new_blob()
{
unsigned long datlen;
unsigned char sha1[20];
void *dat;
yread(0, &datlen, 4);
dat = xmalloc(datlen);
yread(0, dat, datlen);
if (store_object(OBJ_BLOB, dat, datlen, &last_blob, sha1))
free(dat);
}
static void unload_one_branch()
{
while (cur_active_branches >= max_active_branches) {
unsigned long min_commit = ULONG_MAX;
struct branch *e, *l = NULL, *p = NULL;
for (e = active_branches; e; e = e->active_next_branch) {
if (e->last_commit < min_commit) {
p = l;
min_commit = e->last_commit;
}
l = e;
}
if (p) {
e = p->active_next_branch;
p->active_next_branch = e->active_next_branch;
} else {
e = active_branches;
active_branches = e->active_next_branch;
}
e->active_next_branch = NULL;
if (e->branch_tree.tree) {
release_tree_content(e->branch_tree.tree);
e->branch_tree.tree = NULL;
}
cur_active_branches--;
}
}
static void load_branch(struct branch *b)
{
load_tree(&b->branch_tree);
b->active_next_branch = active_branches;
active_branches = b;
cur_active_branches++;
}
static void file_change_m(struct branch *b)
{
const char *path = read_path();
char hexsha1[41];
unsigned char sha1[20];
yread(0, hexsha1, 40);
hexsha1[40] = 0;
if (get_sha1_hex(hexsha1, sha1))
die("Invalid sha1 %s for %s", hexsha1, path);
tree_content_set(&b->branch_tree, path, sha1, 0100644);
}
static void file_change_d(struct branch *b)
{
tree_content_remove(&b->branch_tree, read_path());
}
static void cmd_new_commit()
{
static const unsigned int max_hdr_len = 94;
const char *name = read_path();
struct branch *b = lookup_branch(name);
unsigned int acmsglen;
char *body, *c;
if (!b)
die("Branch not declared: %s", name);
if (!b->branch_tree.tree) {
unload_one_branch();
load_branch(b);
}
/* author_committer_msg */
yread(0, &acmsglen, 4);
body = xmalloc(acmsglen + max_hdr_len);
c = body + max_hdr_len;
yread(0, c, acmsglen);
/* file_change* */
for (;;) {
unsigned char cmd;
yread(0, &cmd, 1);
if (cmd == '0')
break;
else if (cmd == 'M')
file_change_m(b);
else if (cmd == 'D')
file_change_d(b);
else
die("Unsupported file_change: %c", cmd);
}
if (memcmp(b->sha1, null_sha1, 20)) {
sprintf(c - 48, "parent %s", sha1_to_hex(b->sha1));
*(c - 1) = '\n';
c -= 48;
}
store_tree(&b->branch_tree);
sprintf(c - 46, "tree %s", sha1_to_hex(b->branch_tree.sha1));
*(c - 1) = '\n';
c -= 46;
store_object(OBJ_COMMIT,
c, (body + max_hdr_len + acmsglen) - c,
NULL, b->sha1);
free(body);
b->last_commit = object_count_by_type[OBJ_COMMIT];
}
static void cmd_new_branch()
{
struct branch *b = new_branch(read_path());
const char *base = read_path();
struct branch *s = lookup_branch(base);
if (!strcmp(b->name, base))
die("Can't create a branch from itself: %s", base);
else if (s) {
memcpy(b->sha1, s->sha1, 20);
memcpy(b->branch_tree.sha1, s->branch_tree.sha1, 20);
}
else if (!get_sha1(base, b->sha1)) {
if (!memcmp(b->sha1, null_sha1, 20))
memcpy(b->branch_tree.sha1, null_sha1, 20);
else {
unsigned long size;
char *buf;
buf = read_object_with_reference(b->sha1,
type_names[OBJ_COMMIT], &size, b->sha1);
if (!buf || size < 46)
die("Not a valid commit: %s", base);
if (memcmp("tree ", buf, 5)
|| get_sha1_hex(buf + 5, b->branch_tree.sha1))
die("The commit %s is corrupt", sha1_to_hex(b->sha1));
free(buf);
}
} else
die("Not a SHA1 or branch: %s", base);
}
int main(int argc, const char **argv)
{
const char *base_name = argv[1];
int est_obj_cnt = atoi(argv[2]);
char *pack_name;
char *idx_name;
struct stat sb;
setup_ident();
git_config(git_default_config);
pack_name = xmalloc(strlen(base_name) + 6);
sprintf(pack_name, "%s.pack", base_name);
idx_name = xmalloc(strlen(base_name) + 5);
sprintf(idx_name, "%s.idx", base_name);
pack_fd = open(pack_name, O_RDWR|O_CREAT|O_EXCL, 0666);
if (pack_fd < 0)
die("Can't create %s: %s", pack_name, strerror(errno));
alloc_objects(est_obj_cnt);
atom_table = xcalloc(atom_table_sz, sizeof(struct atom_str*));
branch_table = xcalloc(branch_table_sz, sizeof(struct branch*));
avail_tree_table = xcalloc(avail_tree_table_sz, sizeof(struct avail_tree_content*));
init_pack_header();
for (;;) {
unsigned long cmd;
if (optional_read(0, &cmd, 4))
break;
switch (ntohl(cmd)) {
case 'blob': cmd_new_blob(); break;
case 'comt': cmd_new_commit(); break;
case 'brch': cmd_new_branch(); break;
default:
die("Invalid command %lu", cmd);
}
}
fixup_header_footer();
close(pack_fd);
write_index(idx_name);
dump_branches();
fprintf(stderr, "%s statistics:\n", argv[0]);
fprintf(stderr, "---------------------------------------------------\n");
fprintf(stderr, "Alloc'd objects: %10lu (%10lu overflow )\n", alloc_count, alloc_count - est_obj_cnt);
fprintf(stderr, "Total objects: %10lu (%10lu duplicates)\n", object_count, duplicate_count);
fprintf(stderr, " blobs : %10lu (%10lu duplicates)\n", object_count_by_type[OBJ_BLOB], duplicate_count_by_type[OBJ_BLOB]);
fprintf(stderr, " trees : %10lu (%10lu duplicates)\n", object_count_by_type[OBJ_TREE], duplicate_count_by_type[OBJ_TREE]);
fprintf(stderr, " commits: %10lu (%10lu duplicates)\n", object_count_by_type[OBJ_COMMIT], duplicate_count_by_type[OBJ_COMMIT]);
fprintf(stderr, " tags : %10lu (%10lu duplicates)\n", object_count_by_type[OBJ_TAG], duplicate_count_by_type[OBJ_TAG]);
fprintf(stderr, "Total branches: %10lu\n", branch_count);
fprintf(stderr, "Total atoms: %10u\n", atom_cnt);
fprintf(stderr, "Memory pools: %10lu MiB\n", total_allocd/(1024*1024));
fprintf(stderr, "---------------------------------------------------\n");
stat(pack_name, &sb);
fprintf(stderr, "Pack size: %10lu KiB\n", (unsigned long)(sb.st_size/1024));
stat(idx_name, &sb);
fprintf(stderr, "Index size: %10lu KiB\n", (unsigned long)(sb.st_size/1024));
fprintf(stderr, "\n");
return 0;
}