mirror of
https://github.com/git/git.git
synced 2024-11-18 15:04:49 +01:00
ce518bbd6c
compat/regexec.c had a weird combination of function declaration in ANSI style and function definition in K&R style, for example: static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, int nregs, int regs_allocated) internal_function; static unsigned re_copy_regs (regs, pmatch, nregs, regs_allocated) struct re_registers *regs; regmatch_t *pmatch; int nregs, regs_allocated; { ... } with this #define: #ifndef _LIBC # ifdef __i386__ # define internal_function __attribute ((regparm (3), stdcall)) # else # define internal_function # endif #endif The original version as shown above was fine, but with the ANSIfied function definition and in the case where internal_function is not empty, gcc identifies the declaration and definition as different and bails out. Adding internal_function to the definition doesn't help (it results in a syntax error); hence, remove it from the subset of declarations that gcc flags as erroneous. Signed-off-by: Johannes Sixt <j6t@kdbg.org> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4369 lines
125 KiB
C
4369 lines
125 KiB
C
/* Extended regular expression matching and search library.
|
|
Copyright (C) 2002-2005, 2007, 2009, 2010 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, write to the Free
|
|
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301 USA. */
|
|
|
|
static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags,
|
|
int n) internal_function;
|
|
static void match_ctx_clean (re_match_context_t *mctx) internal_function;
|
|
static void match_ctx_free (re_match_context_t *cache) internal_function;
|
|
static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, int node,
|
|
int str_idx, int from, int to)
|
|
internal_function;
|
|
static int search_cur_bkref_entry (const re_match_context_t *mctx, int str_idx)
|
|
internal_function;
|
|
static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, int node,
|
|
int str_idx) internal_function;
|
|
static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop,
|
|
int node, int str_idx)
|
|
internal_function;
|
|
static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts,
|
|
re_dfastate_t **limited_sts, int last_node,
|
|
int last_str_idx)
|
|
internal_function;
|
|
static reg_errcode_t re_search_internal (const regex_t *preg,
|
|
const char *string, int length,
|
|
int start, int range, int stop,
|
|
size_t nmatch, regmatch_t pmatch[],
|
|
int eflags);
|
|
static int re_search_2_stub (struct re_pattern_buffer *bufp,
|
|
const char *string1, int length1,
|
|
const char *string2, int length2,
|
|
int start, int range, struct re_registers *regs,
|
|
int stop, int ret_len);
|
|
static int re_search_stub (struct re_pattern_buffer *bufp,
|
|
const char *string, int length, int start,
|
|
int range, int stop, struct re_registers *regs,
|
|
int ret_len);
|
|
static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch,
|
|
int nregs, int regs_allocated);
|
|
static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx);
|
|
static int check_matching (re_match_context_t *mctx, int fl_longest_match,
|
|
int *p_match_first) internal_function;
|
|
static int check_halt_state_context (const re_match_context_t *mctx,
|
|
const re_dfastate_t *state, int idx)
|
|
internal_function;
|
|
static void update_regs (const re_dfa_t *dfa, regmatch_t *pmatch,
|
|
regmatch_t *prev_idx_match, int cur_node,
|
|
int cur_idx, int nmatch) internal_function;
|
|
static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs,
|
|
int str_idx, int dest_node, int nregs,
|
|
regmatch_t *regs,
|
|
re_node_set *eps_via_nodes)
|
|
internal_function;
|
|
static reg_errcode_t set_regs (const regex_t *preg,
|
|
const re_match_context_t *mctx,
|
|
size_t nmatch, regmatch_t *pmatch,
|
|
int fl_backtrack) internal_function;
|
|
static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs)
|
|
internal_function;
|
|
|
|
#ifdef RE_ENABLE_I18N
|
|
static int sift_states_iter_mb (const re_match_context_t *mctx,
|
|
re_sift_context_t *sctx,
|
|
int node_idx, int str_idx, int max_str_idx)
|
|
internal_function;
|
|
#endif /* RE_ENABLE_I18N */
|
|
static reg_errcode_t sift_states_backward (const re_match_context_t *mctx,
|
|
re_sift_context_t *sctx)
|
|
internal_function;
|
|
static reg_errcode_t build_sifted_states (const re_match_context_t *mctx,
|
|
re_sift_context_t *sctx, int str_idx,
|
|
re_node_set *cur_dest)
|
|
internal_function;
|
|
static reg_errcode_t update_cur_sifted_state (const re_match_context_t *mctx,
|
|
re_sift_context_t *sctx,
|
|
int str_idx,
|
|
re_node_set *dest_nodes)
|
|
internal_function;
|
|
static reg_errcode_t add_epsilon_src_nodes (const re_dfa_t *dfa,
|
|
re_node_set *dest_nodes,
|
|
const re_node_set *candidates)
|
|
internal_function;
|
|
static int check_dst_limits (const re_match_context_t *mctx,
|
|
re_node_set *limits,
|
|
int dst_node, int dst_idx, int src_node,
|
|
int src_idx) internal_function;
|
|
static int check_dst_limits_calc_pos_1 (const re_match_context_t *mctx,
|
|
int boundaries, int subexp_idx,
|
|
int from_node, int bkref_idx)
|
|
internal_function;
|
|
static int check_dst_limits_calc_pos (const re_match_context_t *mctx,
|
|
int limit, int subexp_idx,
|
|
int node, int str_idx,
|
|
int bkref_idx) internal_function;
|
|
static reg_errcode_t check_subexp_limits (const re_dfa_t *dfa,
|
|
re_node_set *dest_nodes,
|
|
const re_node_set *candidates,
|
|
re_node_set *limits,
|
|
struct re_backref_cache_entry *bkref_ents,
|
|
int str_idx) internal_function;
|
|
static reg_errcode_t sift_states_bkref (const re_match_context_t *mctx,
|
|
re_sift_context_t *sctx,
|
|
int str_idx, const re_node_set *candidates)
|
|
internal_function;
|
|
static reg_errcode_t merge_state_array (const re_dfa_t *dfa,
|
|
re_dfastate_t **dst,
|
|
re_dfastate_t **src, int num)
|
|
internal_function;
|
|
static re_dfastate_t *find_recover_state (reg_errcode_t *err,
|
|
re_match_context_t *mctx) internal_function;
|
|
static re_dfastate_t *transit_state (reg_errcode_t *err,
|
|
re_match_context_t *mctx,
|
|
re_dfastate_t *state) internal_function;
|
|
static re_dfastate_t *merge_state_with_log (reg_errcode_t *err,
|
|
re_match_context_t *mctx,
|
|
re_dfastate_t *next_state)
|
|
internal_function;
|
|
static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx,
|
|
re_node_set *cur_nodes,
|
|
int str_idx) internal_function;
|
|
#if 0
|
|
static re_dfastate_t *transit_state_sb (reg_errcode_t *err,
|
|
re_match_context_t *mctx,
|
|
re_dfastate_t *pstate)
|
|
internal_function;
|
|
#endif
|
|
#ifdef RE_ENABLE_I18N
|
|
static reg_errcode_t transit_state_mb (re_match_context_t *mctx,
|
|
re_dfastate_t *pstate)
|
|
internal_function;
|
|
#endif /* RE_ENABLE_I18N */
|
|
static reg_errcode_t transit_state_bkref (re_match_context_t *mctx,
|
|
const re_node_set *nodes)
|
|
internal_function;
|
|
static reg_errcode_t get_subexp (re_match_context_t *mctx,
|
|
int bkref_node, int bkref_str_idx)
|
|
internal_function;
|
|
static reg_errcode_t get_subexp_sub (re_match_context_t *mctx,
|
|
const re_sub_match_top_t *sub_top,
|
|
re_sub_match_last_t *sub_last,
|
|
int bkref_node, int bkref_str)
|
|
internal_function;
|
|
static int find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes,
|
|
int subexp_idx, int type) internal_function;
|
|
static reg_errcode_t check_arrival (re_match_context_t *mctx,
|
|
state_array_t *path, int top_node,
|
|
int top_str, int last_node, int last_str,
|
|
int type) internal_function;
|
|
static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx,
|
|
int str_idx,
|
|
re_node_set *cur_nodes,
|
|
re_node_set *next_nodes)
|
|
internal_function;
|
|
static reg_errcode_t check_arrival_expand_ecl (const re_dfa_t *dfa,
|
|
re_node_set *cur_nodes,
|
|
int ex_subexp, int type)
|
|
internal_function;
|
|
static reg_errcode_t check_arrival_expand_ecl_sub (const re_dfa_t *dfa,
|
|
re_node_set *dst_nodes,
|
|
int target, int ex_subexp,
|
|
int type) internal_function;
|
|
static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx,
|
|
re_node_set *cur_nodes, int cur_str,
|
|
int subexp_num, int type)
|
|
internal_function;
|
|
static int build_trtable (const re_dfa_t *dfa,
|
|
re_dfastate_t *state) internal_function;
|
|
#ifdef RE_ENABLE_I18N
|
|
static int check_node_accept_bytes (const re_dfa_t *dfa, int node_idx,
|
|
const re_string_t *input, int idx)
|
|
internal_function;
|
|
# ifdef _LIBC
|
|
static unsigned int find_collation_sequence_value (const unsigned char *mbs,
|
|
size_t name_len)
|
|
internal_function;
|
|
# endif /* _LIBC */
|
|
#endif /* RE_ENABLE_I18N */
|
|
static int group_nodes_into_DFAstates (const re_dfa_t *dfa,
|
|
const re_dfastate_t *state,
|
|
re_node_set *states_node,
|
|
bitset_t *states_ch) internal_function;
|
|
static int check_node_accept (const re_match_context_t *mctx,
|
|
const re_token_t *node, int idx)
|
|
internal_function;
|
|
static reg_errcode_t extend_buffers (re_match_context_t *mctx)
|
|
internal_function;
|
|
|
|
/* Entry point for POSIX code. */
|
|
|
|
/* regexec searches for a given pattern, specified by PREG, in the
|
|
string STRING.
|
|
|
|
If NMATCH is zero or REG_NOSUB was set in the cflags argument to
|
|
`regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
|
|
least NMATCH elements, and we set them to the offsets of the
|
|
corresponding matched substrings.
|
|
|
|
EFLAGS specifies `execution flags' which affect matching: if
|
|
REG_NOTBOL is set, then ^ does not match at the beginning of the
|
|
string; if REG_NOTEOL is set, then $ does not match at the end.
|
|
|
|
We return 0 if we find a match and REG_NOMATCH if not. */
|
|
|
|
int
|
|
regexec (
|
|
const regex_t *__restrict preg,
|
|
const char *__restrict string,
|
|
size_t nmatch,
|
|
regmatch_t pmatch[],
|
|
int eflags)
|
|
{
|
|
reg_errcode_t err;
|
|
int start, length;
|
|
|
|
if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND))
|
|
return REG_BADPAT;
|
|
|
|
if (eflags & REG_STARTEND)
|
|
{
|
|
start = pmatch[0].rm_so;
|
|
length = pmatch[0].rm_eo;
|
|
}
|
|
else
|
|
{
|
|
start = 0;
|
|
length = strlen (string);
|
|
}
|
|
|
|
__libc_lock_lock (dfa->lock);
|
|
if (preg->no_sub)
|
|
err = re_search_internal (preg, string, length, start, length - start,
|
|
length, 0, NULL, eflags);
|
|
else
|
|
err = re_search_internal (preg, string, length, start, length - start,
|
|
length, nmatch, pmatch, eflags);
|
|
__libc_lock_unlock (dfa->lock);
|
|
return err != REG_NOERROR;
|
|
}
|
|
|
|
#ifdef _LIBC
|
|
# include <shlib-compat.h>
|
|
versioned_symbol (libc, __regexec, regexec, GLIBC_2_3_4);
|
|
|
|
# if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3_4)
|
|
__typeof__ (__regexec) __compat_regexec;
|
|
|
|
int
|
|
attribute_compat_text_section
|
|
__compat_regexec (const regex_t *__restrict preg,
|
|
const char *__restrict string, size_t nmatch,
|
|
regmatch_t pmatch[], int eflags)
|
|
{
|
|
return regexec (preg, string, nmatch, pmatch,
|
|
eflags & (REG_NOTBOL | REG_NOTEOL));
|
|
}
|
|
compat_symbol (libc, __compat_regexec, regexec, GLIBC_2_0);
|
|
# endif
|
|
#endif
|
|
|
|
/* Entry points for GNU code. */
|
|
|
|
/* re_match, re_search, re_match_2, re_search_2
|
|
|
|
The former two functions operate on STRING with length LENGTH,
|
|
while the later two operate on concatenation of STRING1 and STRING2
|
|
with lengths LENGTH1 and LENGTH2, respectively.
|
|
|
|
re_match() matches the compiled pattern in BUFP against the string,
|
|
starting at index START.
|
|
|
|
re_search() first tries matching at index START, then it tries to match
|
|
starting from index START + 1, and so on. The last start position tried
|
|
is START + RANGE. (Thus RANGE = 0 forces re_search to operate the same
|
|
way as re_match().)
|
|
|
|
The parameter STOP of re_{match,search}_2 specifies that no match exceeding
|
|
the first STOP characters of the concatenation of the strings should be
|
|
concerned.
|
|
|
|
If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match
|
|
and all groups is stroed in REGS. (For the "_2" variants, the offsets are
|
|
computed relative to the concatenation, not relative to the individual
|
|
strings.)
|
|
|
|
On success, re_match* functions return the length of the match, re_search*
|
|
return the position of the start of the match. Return value -1 means no
|
|
match was found and -2 indicates an internal error. */
|
|
|
|
int
|
|
re_match (struct re_pattern_buffer *bufp,
|
|
const char *string,
|
|
int length,
|
|
int start,
|
|
struct re_registers *regs)
|
|
{
|
|
return re_search_stub (bufp, string, length, start, 0, length, regs, 1);
|
|
}
|
|
#ifdef _LIBC
|
|
weak_alias (__re_match, re_match)
|
|
#endif
|
|
|
|
int
|
|
re_search (struct re_pattern_buffer *bufp,
|
|
const char *string,
|
|
int length, int start, int range,
|
|
struct re_registers *regs)
|
|
{
|
|
return re_search_stub (bufp, string, length, start, range, length, regs, 0);
|
|
}
|
|
#ifdef _LIBC
|
|
weak_alias (__re_search, re_search)
|
|
#endif
|
|
|
|
int
|
|
re_match_2 (struct re_pattern_buffer *bufp,
|
|
const char *string1, int length1,
|
|
const char *string2, int length2, int start,
|
|
struct re_registers *regs, int stop)
|
|
{
|
|
return re_search_2_stub (bufp, string1, length1, string2, length2,
|
|
start, 0, regs, stop, 1);
|
|
}
|
|
#ifdef _LIBC
|
|
weak_alias (__re_match_2, re_match_2)
|
|
#endif
|
|
|
|
int
|
|
re_search_2 (struct re_pattern_buffer *bufp,
|
|
const char *string1, int length1,
|
|
const char *string2, int length2, int start,
|
|
int range, struct re_registers *regs, int stop)
|
|
{
|
|
return re_search_2_stub (bufp, string1, length1, string2, length2,
|
|
start, range, regs, stop, 0);
|
|
}
|
|
#ifdef _LIBC
|
|
weak_alias (__re_search_2, re_search_2)
|
|
#endif
|
|
|
|
static int
|
|
re_search_2_stub (struct re_pattern_buffer *bufp,
|
|
const char *string1, int length1,
|
|
const char *string2, int length2, int start,
|
|
int range, struct re_registers *regs,
|
|
int stop, int ret_len)
|
|
{
|
|
const char *str;
|
|
int rval;
|
|
int len = length1 + length2;
|
|
int free_str = 0;
|
|
|
|
if (BE (length1 < 0 || length2 < 0 || stop < 0, 0))
|
|
return -2;
|
|
|
|
/* Concatenate the strings. */
|
|
if (length2 > 0)
|
|
if (length1 > 0)
|
|
{
|
|
char *s = re_malloc (char, len);
|
|
|
|
if (BE (s == NULL, 0))
|
|
return -2;
|
|
memcpy (s, string1, length1);
|
|
memcpy (s + length1, string2, length2);
|
|
str = s;
|
|
free_str = 1;
|
|
}
|
|
else
|
|
str = string2;
|
|
else
|
|
str = string1;
|
|
|
|
rval = re_search_stub (bufp, str, len, start, range, stop, regs, ret_len);
|
|
if (free_str)
|
|
re_free ((char *) str);
|
|
return rval;
|
|
}
|
|
|
|
/* The parameters have the same meaning as those of re_search.
|
|
Additional parameters:
|
|
If RET_LEN is nonzero the length of the match is returned (re_match style);
|
|
otherwise the position of the match is returned. */
|
|
|
|
static int
|
|
re_search_stub (struct re_pattern_buffer *bufp,
|
|
const char *string, int length, int start,
|
|
int range, int stop,
|
|
struct re_registers *regs, int ret_len)
|
|
{
|
|
reg_errcode_t result;
|
|
regmatch_t *pmatch;
|
|
int nregs, rval;
|
|
int eflags = 0;
|
|
|
|
/* Check for out-of-range. */
|
|
if (BE (start < 0 || start > length, 0))
|
|
return -1;
|
|
if (BE (start + range > length, 0))
|
|
range = length - start;
|
|
else if (BE (start + range < 0, 0))
|
|
range = -start;
|
|
|
|
__libc_lock_lock (dfa->lock);
|
|
|
|
eflags |= (bufp->not_bol) ? REG_NOTBOL : 0;
|
|
eflags |= (bufp->not_eol) ? REG_NOTEOL : 0;
|
|
|
|
/* Compile fastmap if we haven't yet. */
|
|
if (range > 0 && bufp->fastmap != NULL && !bufp->fastmap_accurate)
|
|
re_compile_fastmap (bufp);
|
|
|
|
if (BE (bufp->no_sub, 0))
|
|
regs = NULL;
|
|
|
|
/* We need at least 1 register. */
|
|
if (regs == NULL)
|
|
nregs = 1;
|
|
else if (BE (bufp->regs_allocated == REGS_FIXED &&
|
|
regs->num_regs < bufp->re_nsub + 1, 0))
|
|
{
|
|
nregs = regs->num_regs;
|
|
if (BE (nregs < 1, 0))
|
|
{
|
|
/* Nothing can be copied to regs. */
|
|
regs = NULL;
|
|
nregs = 1;
|
|
}
|
|
}
|
|
else
|
|
nregs = bufp->re_nsub + 1;
|
|
pmatch = re_malloc (regmatch_t, nregs);
|
|
if (BE (pmatch == NULL, 0))
|
|
{
|
|
rval = -2;
|
|
goto out;
|
|
}
|
|
|
|
result = re_search_internal (bufp, string, length, start, range, stop,
|
|
nregs, pmatch, eflags);
|
|
|
|
rval = 0;
|
|
|
|
/* I hope we needn't fill ther regs with -1's when no match was found. */
|
|
if (result != REG_NOERROR)
|
|
rval = -1;
|
|
else if (regs != NULL)
|
|
{
|
|
/* If caller wants register contents data back, copy them. */
|
|
bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs,
|
|
bufp->regs_allocated);
|
|
if (BE (bufp->regs_allocated == REGS_UNALLOCATED, 0))
|
|
rval = -2;
|
|
}
|
|
|
|
if (BE (rval == 0, 1))
|
|
{
|
|
if (ret_len)
|
|
{
|
|
assert (pmatch[0].rm_so == start);
|
|
rval = pmatch[0].rm_eo - start;
|
|
}
|
|
else
|
|
rval = pmatch[0].rm_so;
|
|
}
|
|
re_free (pmatch);
|
|
out:
|
|
__libc_lock_unlock (dfa->lock);
|
|
return rval;
|
|
}
|
|
|
|
static unsigned
|
|
re_copy_regs (struct re_registers *regs,
|
|
regmatch_t *pmatch,
|
|
int nregs, int regs_allocated)
|
|
{
|
|
int rval = REGS_REALLOCATE;
|
|
int i;
|
|
int need_regs = nregs + 1;
|
|
/* We need one extra element beyond `num_regs' for the `-1' marker GNU code
|
|
uses. */
|
|
|
|
/* Have the register data arrays been allocated? */
|
|
if (regs_allocated == REGS_UNALLOCATED)
|
|
{ /* No. So allocate them with malloc. */
|
|
regs->start = re_malloc (regoff_t, need_regs);
|
|
if (BE (regs->start == NULL, 0))
|
|
return REGS_UNALLOCATED;
|
|
regs->end = re_malloc (regoff_t, need_regs);
|
|
if (BE (regs->end == NULL, 0))
|
|
{
|
|
re_free (regs->start);
|
|
return REGS_UNALLOCATED;
|
|
}
|
|
regs->num_regs = need_regs;
|
|
}
|
|
else if (regs_allocated == REGS_REALLOCATE)
|
|
{ /* Yes. If we need more elements than were already
|
|
allocated, reallocate them. If we need fewer, just
|
|
leave it alone. */
|
|
if (BE (need_regs > regs->num_regs, 0))
|
|
{
|
|
regoff_t *new_start = re_realloc (regs->start, regoff_t, need_regs);
|
|
regoff_t *new_end;
|
|
if (BE (new_start == NULL, 0))
|
|
return REGS_UNALLOCATED;
|
|
new_end = re_realloc (regs->end, regoff_t, need_regs);
|
|
if (BE (new_end == NULL, 0))
|
|
{
|
|
re_free (new_start);
|
|
return REGS_UNALLOCATED;
|
|
}
|
|
regs->start = new_start;
|
|
regs->end = new_end;
|
|
regs->num_regs = need_regs;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
assert (regs_allocated == REGS_FIXED);
|
|
/* This function may not be called with REGS_FIXED and nregs too big. */
|
|
assert (regs->num_regs >= nregs);
|
|
rval = REGS_FIXED;
|
|
}
|
|
|
|
/* Copy the regs. */
|
|
for (i = 0; i < nregs; ++i)
|
|
{
|
|
regs->start[i] = pmatch[i].rm_so;
|
|
regs->end[i] = pmatch[i].rm_eo;
|
|
}
|
|
for ( ; i < regs->num_regs; ++i)
|
|
regs->start[i] = regs->end[i] = -1;
|
|
|
|
return rval;
|
|
}
|
|
|
|
/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
|
|
ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
|
|
this memory for recording register information. STARTS and ENDS
|
|
must be allocated using the malloc library routine, and must each
|
|
be at least NUM_REGS * sizeof (regoff_t) bytes long.
|
|
|
|
If NUM_REGS == 0, then subsequent matches should allocate their own
|
|
register data.
|
|
|
|
Unless this function is called, the first search or match using
|
|
PATTERN_BUFFER will allocate its own register data, without
|
|
freeing the old data. */
|
|
|
|
void
|
|
re_set_registers (struct re_pattern_buffer *bufp,
|
|
struct re_registers *regs,
|
|
unsigned num_regs,
|
|
regoff_t *starts,
|
|
regoff_t *ends)
|
|
{
|
|
if (num_regs)
|
|
{
|
|
bufp->regs_allocated = REGS_REALLOCATE;
|
|
regs->num_regs = num_regs;
|
|
regs->start = starts;
|
|
regs->end = ends;
|
|
}
|
|
else
|
|
{
|
|
bufp->regs_allocated = REGS_UNALLOCATED;
|
|
regs->num_regs = 0;
|
|
regs->start = regs->end = (regoff_t *) 0;
|
|
}
|
|
}
|
|
#ifdef _LIBC
|
|
weak_alias (__re_set_registers, re_set_registers)
|
|
#endif
|
|
|
|
/* Entry points compatible with 4.2 BSD regex library. We don't define
|
|
them unless specifically requested. */
|
|
|
|
#if defined _REGEX_RE_COMP || defined _LIBC
|
|
int
|
|
# ifdef _LIBC
|
|
weak_function
|
|
# endif
|
|
re_exec (s)
|
|
const char *s;
|
|
{
|
|
return 0 == regexec (&re_comp_buf, s, 0, NULL, 0);
|
|
}
|
|
#endif /* _REGEX_RE_COMP */
|
|
|
|
/* Internal entry point. */
|
|
|
|
/* Searches for a compiled pattern PREG in the string STRING, whose
|
|
length is LENGTH. NMATCH, PMATCH, and EFLAGS have the same
|
|
mingings with regexec. START, and RANGE have the same meanings
|
|
with re_search.
|
|
Return REG_NOERROR if we find a match, and REG_NOMATCH if not,
|
|
otherwise return the error code.
|
|
Note: We assume front end functions already check ranges.
|
|
(START + RANGE >= 0 && START + RANGE <= LENGTH) */
|
|
|
|
static reg_errcode_t
|
|
re_search_internal (const regex_t *preg,
|
|
const char *string,
|
|
int length, int start, int range, int stop,
|
|
size_t nmatch, regmatch_t pmatch[],
|
|
int eflags)
|
|
{
|
|
reg_errcode_t err;
|
|
const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer;
|
|
int left_lim, right_lim, incr;
|
|
int fl_longest_match, match_first, match_kind, match_last = -1;
|
|
int extra_nmatch;
|
|
int sb, ch;
|
|
#if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)
|
|
re_match_context_t mctx = { .dfa = dfa };
|
|
#else
|
|
re_match_context_t mctx;
|
|
#endif
|
|
char *fastmap = (preg->fastmap != NULL && preg->fastmap_accurate
|
|
&& range && !preg->can_be_null) ? preg->fastmap : NULL;
|
|
RE_TRANSLATE_TYPE t = preg->translate;
|
|
|
|
#if !(defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L))
|
|
memset (&mctx, '\0', sizeof (re_match_context_t));
|
|
mctx.dfa = dfa;
|
|
#endif
|
|
|
|
extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0;
|
|
nmatch -= extra_nmatch;
|
|
|
|
/* Check if the DFA haven't been compiled. */
|
|
if (BE (preg->used == 0 || dfa->init_state == NULL
|
|
|| dfa->init_state_word == NULL || dfa->init_state_nl == NULL
|
|
|| dfa->init_state_begbuf == NULL, 0))
|
|
return REG_NOMATCH;
|
|
|
|
#ifdef DEBUG
|
|
/* We assume front-end functions already check them. */
|
|
assert (start + range >= 0 && start + range <= length);
|
|
#endif
|
|
|
|
/* If initial states with non-begbuf contexts have no elements,
|
|
the regex must be anchored. If preg->newline_anchor is set,
|
|
we'll never use init_state_nl, so do not check it. */
|
|
if (dfa->init_state->nodes.nelem == 0
|
|
&& dfa->init_state_word->nodes.nelem == 0
|
|
&& (dfa->init_state_nl->nodes.nelem == 0
|
|
|| !preg->newline_anchor))
|
|
{
|
|
if (start != 0 && start + range != 0)
|
|
return REG_NOMATCH;
|
|
start = range = 0;
|
|
}
|
|
|
|
/* We must check the longest matching, if nmatch > 0. */
|
|
fl_longest_match = (nmatch != 0 || dfa->nbackref);
|
|
|
|
err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1,
|
|
preg->translate, preg->syntax & RE_ICASE, dfa);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
goto free_return;
|
|
mctx.input.stop = stop;
|
|
mctx.input.raw_stop = stop;
|
|
mctx.input.newline_anchor = preg->newline_anchor;
|
|
|
|
err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
goto free_return;
|
|
|
|
/* We will log all the DFA states through which the dfa pass,
|
|
if nmatch > 1, or this dfa has "multibyte node", which is a
|
|
back-reference or a node which can accept multibyte character or
|
|
multi character collating element. */
|
|
if (nmatch > 1 || dfa->has_mb_node)
|
|
{
|
|
/* Avoid overflow. */
|
|
if (BE (SIZE_MAX / sizeof (re_dfastate_t *) <= mctx.input.bufs_len, 0))
|
|
{
|
|
err = REG_ESPACE;
|
|
goto free_return;
|
|
}
|
|
|
|
mctx.state_log = re_malloc (re_dfastate_t *, mctx.input.bufs_len + 1);
|
|
if (BE (mctx.state_log == NULL, 0))
|
|
{
|
|
err = REG_ESPACE;
|
|
goto free_return;
|
|
}
|
|
}
|
|
else
|
|
mctx.state_log = NULL;
|
|
|
|
match_first = start;
|
|
mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF
|
|
: CONTEXT_NEWLINE | CONTEXT_BEGBUF;
|
|
|
|
/* Check incrementally whether of not the input string match. */
|
|
incr = (range < 0) ? -1 : 1;
|
|
left_lim = (range < 0) ? start + range : start;
|
|
right_lim = (range < 0) ? start : start + range;
|
|
sb = dfa->mb_cur_max == 1;
|
|
match_kind =
|
|
(fastmap
|
|
? ((sb || !(preg->syntax & RE_ICASE || t) ? 4 : 0)
|
|
| (range >= 0 ? 2 : 0)
|
|
| (t != NULL ? 1 : 0))
|
|
: 8);
|
|
|
|
for (;; match_first += incr)
|
|
{
|
|
err = REG_NOMATCH;
|
|
if (match_first < left_lim || right_lim < match_first)
|
|
goto free_return;
|
|
|
|
/* Advance as rapidly as possible through the string, until we
|
|
find a plausible place to start matching. This may be done
|
|
with varying efficiency, so there are various possibilities:
|
|
only the most common of them are specialized, in order to
|
|
save on code size. We use a switch statement for speed. */
|
|
switch (match_kind)
|
|
{
|
|
case 8:
|
|
/* No fastmap. */
|
|
break;
|
|
|
|
case 7:
|
|
/* Fastmap with single-byte translation, match forward. */
|
|
while (BE (match_first < right_lim, 1)
|
|
&& !fastmap[t[(unsigned char) string[match_first]]])
|
|
++match_first;
|
|
goto forward_match_found_start_or_reached_end;
|
|
|
|
case 6:
|
|
/* Fastmap without translation, match forward. */
|
|
while (BE (match_first < right_lim, 1)
|
|
&& !fastmap[(unsigned char) string[match_first]])
|
|
++match_first;
|
|
|
|
forward_match_found_start_or_reached_end:
|
|
if (BE (match_first == right_lim, 0))
|
|
{
|
|
ch = match_first >= length
|
|
? 0 : (unsigned char) string[match_first];
|
|
if (!fastmap[t ? t[ch] : ch])
|
|
goto free_return;
|
|
}
|
|
break;
|
|
|
|
case 4:
|
|
case 5:
|
|
/* Fastmap without multi-byte translation, match backwards. */
|
|
while (match_first >= left_lim)
|
|
{
|
|
ch = match_first >= length
|
|
? 0 : (unsigned char) string[match_first];
|
|
if (fastmap[t ? t[ch] : ch])
|
|
break;
|
|
--match_first;
|
|
}
|
|
if (match_first < left_lim)
|
|
goto free_return;
|
|
break;
|
|
|
|
default:
|
|
/* In this case, we can't determine easily the current byte,
|
|
since it might be a component byte of a multibyte
|
|
character. Then we use the constructed buffer instead. */
|
|
for (;;)
|
|
{
|
|
/* If MATCH_FIRST is out of the valid range, reconstruct the
|
|
buffers. */
|
|
unsigned int offset = match_first - mctx.input.raw_mbs_idx;
|
|
if (BE (offset >= (unsigned int) mctx.input.valid_raw_len, 0))
|
|
{
|
|
err = re_string_reconstruct (&mctx.input, match_first,
|
|
eflags);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
goto free_return;
|
|
|
|
offset = match_first - mctx.input.raw_mbs_idx;
|
|
}
|
|
/* If MATCH_FIRST is out of the buffer, leave it as '\0'.
|
|
Note that MATCH_FIRST must not be smaller than 0. */
|
|
ch = (match_first >= length
|
|
? 0 : re_string_byte_at (&mctx.input, offset));
|
|
if (fastmap[ch])
|
|
break;
|
|
match_first += incr;
|
|
if (match_first < left_lim || match_first > right_lim)
|
|
{
|
|
err = REG_NOMATCH;
|
|
goto free_return;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Reconstruct the buffers so that the matcher can assume that
|
|
the matching starts from the beginning of the buffer. */
|
|
err = re_string_reconstruct (&mctx.input, match_first, eflags);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
goto free_return;
|
|
|
|
#ifdef RE_ENABLE_I18N
|
|
/* Don't consider this char as a possible match start if it part,
|
|
yet isn't the head, of a multibyte character. */
|
|
if (!sb && !re_string_first_byte (&mctx.input, 0))
|
|
continue;
|
|
#endif
|
|
|
|
/* It seems to be appropriate one, then use the matcher. */
|
|
/* We assume that the matching starts from 0. */
|
|
mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0;
|
|
match_last = check_matching (&mctx, fl_longest_match,
|
|
range >= 0 ? &match_first : NULL);
|
|
if (match_last != -1)
|
|
{
|
|
if (BE (match_last == -2, 0))
|
|
{
|
|
err = REG_ESPACE;
|
|
goto free_return;
|
|
}
|
|
else
|
|
{
|
|
mctx.match_last = match_last;
|
|
if ((!preg->no_sub && nmatch > 1) || dfa->nbackref)
|
|
{
|
|
re_dfastate_t *pstate = mctx.state_log[match_last];
|
|
mctx.last_node = check_halt_state_context (&mctx, pstate,
|
|
match_last);
|
|
}
|
|
if ((!preg->no_sub && nmatch > 1 && dfa->has_plural_match)
|
|
|| dfa->nbackref)
|
|
{
|
|
err = prune_impossible_nodes (&mctx);
|
|
if (err == REG_NOERROR)
|
|
break;
|
|
if (BE (err != REG_NOMATCH, 0))
|
|
goto free_return;
|
|
match_last = -1;
|
|
}
|
|
else
|
|
break; /* We found a match. */
|
|
}
|
|
}
|
|
|
|
match_ctx_clean (&mctx);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
assert (match_last != -1);
|
|
assert (err == REG_NOERROR);
|
|
#endif
|
|
|
|
/* Set pmatch[] if we need. */
|
|
if (nmatch > 0)
|
|
{
|
|
int reg_idx;
|
|
|
|
/* Initialize registers. */
|
|
for (reg_idx = 1; reg_idx < nmatch; ++reg_idx)
|
|
pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1;
|
|
|
|
/* Set the points where matching start/end. */
|
|
pmatch[0].rm_so = 0;
|
|
pmatch[0].rm_eo = mctx.match_last;
|
|
|
|
if (!preg->no_sub && nmatch > 1)
|
|
{
|
|
err = set_regs (preg, &mctx, nmatch, pmatch,
|
|
dfa->has_plural_match && dfa->nbackref > 0);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
goto free_return;
|
|
}
|
|
|
|
/* At last, add the offset to the each registers, since we slided
|
|
the buffers so that we could assume that the matching starts
|
|
from 0. */
|
|
for (reg_idx = 0; reg_idx < nmatch; ++reg_idx)
|
|
if (pmatch[reg_idx].rm_so != -1)
|
|
{
|
|
#ifdef RE_ENABLE_I18N
|
|
if (BE (mctx.input.offsets_needed != 0, 0))
|
|
{
|
|
pmatch[reg_idx].rm_so =
|
|
(pmatch[reg_idx].rm_so == mctx.input.valid_len
|
|
? mctx.input.valid_raw_len
|
|
: mctx.input.offsets[pmatch[reg_idx].rm_so]);
|
|
pmatch[reg_idx].rm_eo =
|
|
(pmatch[reg_idx].rm_eo == mctx.input.valid_len
|
|
? mctx.input.valid_raw_len
|
|
: mctx.input.offsets[pmatch[reg_idx].rm_eo]);
|
|
}
|
|
#else
|
|
assert (mctx.input.offsets_needed == 0);
|
|
#endif
|
|
pmatch[reg_idx].rm_so += match_first;
|
|
pmatch[reg_idx].rm_eo += match_first;
|
|
}
|
|
for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx)
|
|
{
|
|
pmatch[nmatch + reg_idx].rm_so = -1;
|
|
pmatch[nmatch + reg_idx].rm_eo = -1;
|
|
}
|
|
|
|
if (dfa->subexp_map)
|
|
for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++)
|
|
if (dfa->subexp_map[reg_idx] != reg_idx)
|
|
{
|
|
pmatch[reg_idx + 1].rm_so
|
|
= pmatch[dfa->subexp_map[reg_idx] + 1].rm_so;
|
|
pmatch[reg_idx + 1].rm_eo
|
|
= pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo;
|
|
}
|
|
}
|
|
|
|
free_return:
|
|
re_free (mctx.state_log);
|
|
if (dfa->nbackref)
|
|
match_ctx_free (&mctx);
|
|
re_string_destruct (&mctx.input);
|
|
return err;
|
|
}
|
|
|
|
static reg_errcode_t
|
|
prune_impossible_nodes (re_match_context_t *mctx)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
int halt_node, match_last;
|
|
reg_errcode_t ret;
|
|
re_dfastate_t **sifted_states;
|
|
re_dfastate_t **lim_states = NULL;
|
|
re_sift_context_t sctx;
|
|
#ifdef DEBUG
|
|
assert (mctx->state_log != NULL);
|
|
#endif
|
|
match_last = mctx->match_last;
|
|
halt_node = mctx->last_node;
|
|
|
|
/* Avoid overflow. */
|
|
if (BE (SIZE_MAX / sizeof (re_dfastate_t *) <= match_last, 0))
|
|
return REG_ESPACE;
|
|
|
|
sifted_states = re_malloc (re_dfastate_t *, match_last + 1);
|
|
if (BE (sifted_states == NULL, 0))
|
|
{
|
|
ret = REG_ESPACE;
|
|
goto free_return;
|
|
}
|
|
if (dfa->nbackref)
|
|
{
|
|
lim_states = re_malloc (re_dfastate_t *, match_last + 1);
|
|
if (BE (lim_states == NULL, 0))
|
|
{
|
|
ret = REG_ESPACE;
|
|
goto free_return;
|
|
}
|
|
while (1)
|
|
{
|
|
memset (lim_states, '\0',
|
|
sizeof (re_dfastate_t *) * (match_last + 1));
|
|
sift_ctx_init (&sctx, sifted_states, lim_states, halt_node,
|
|
match_last);
|
|
ret = sift_states_backward (mctx, &sctx);
|
|
re_node_set_free (&sctx.limits);
|
|
if (BE (ret != REG_NOERROR, 0))
|
|
goto free_return;
|
|
if (sifted_states[0] != NULL || lim_states[0] != NULL)
|
|
break;
|
|
do
|
|
{
|
|
--match_last;
|
|
if (match_last < 0)
|
|
{
|
|
ret = REG_NOMATCH;
|
|
goto free_return;
|
|
}
|
|
} while (mctx->state_log[match_last] == NULL
|
|
|| !mctx->state_log[match_last]->halt);
|
|
halt_node = check_halt_state_context (mctx,
|
|
mctx->state_log[match_last],
|
|
match_last);
|
|
}
|
|
ret = merge_state_array (dfa, sifted_states, lim_states,
|
|
match_last + 1);
|
|
re_free (lim_states);
|
|
lim_states = NULL;
|
|
if (BE (ret != REG_NOERROR, 0))
|
|
goto free_return;
|
|
}
|
|
else
|
|
{
|
|
sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last);
|
|
ret = sift_states_backward (mctx, &sctx);
|
|
re_node_set_free (&sctx.limits);
|
|
if (BE (ret != REG_NOERROR, 0))
|
|
goto free_return;
|
|
if (sifted_states[0] == NULL)
|
|
{
|
|
ret = REG_NOMATCH;
|
|
goto free_return;
|
|
}
|
|
}
|
|
re_free (mctx->state_log);
|
|
mctx->state_log = sifted_states;
|
|
sifted_states = NULL;
|
|
mctx->last_node = halt_node;
|
|
mctx->match_last = match_last;
|
|
ret = REG_NOERROR;
|
|
free_return:
|
|
re_free (sifted_states);
|
|
re_free (lim_states);
|
|
return ret;
|
|
}
|
|
|
|
/* Acquire an initial state and return it.
|
|
We must select appropriate initial state depending on the context,
|
|
since initial states may have constraints like "\<", "^", etc.. */
|
|
|
|
static inline re_dfastate_t *
|
|
__attribute ((always_inline)) internal_function
|
|
acquire_init_state_context (reg_errcode_t *err, const re_match_context_t *mctx,
|
|
int idx)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
if (dfa->init_state->has_constraint)
|
|
{
|
|
unsigned int context;
|
|
context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags);
|
|
if (IS_WORD_CONTEXT (context))
|
|
return dfa->init_state_word;
|
|
else if (IS_ORDINARY_CONTEXT (context))
|
|
return dfa->init_state;
|
|
else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context))
|
|
return dfa->init_state_begbuf;
|
|
else if (IS_NEWLINE_CONTEXT (context))
|
|
return dfa->init_state_nl;
|
|
else if (IS_BEGBUF_CONTEXT (context))
|
|
{
|
|
/* It is relatively rare case, then calculate on demand. */
|
|
return re_acquire_state_context (err, dfa,
|
|
dfa->init_state->entrance_nodes,
|
|
context);
|
|
}
|
|
else
|
|
/* Must not happen? */
|
|
return dfa->init_state;
|
|
}
|
|
else
|
|
return dfa->init_state;
|
|
}
|
|
|
|
/* Check whether the regular expression match input string INPUT or not,
|
|
and return the index where the matching end, return -1 if not match,
|
|
or return -2 in case of an error.
|
|
FL_LONGEST_MATCH means we want the POSIX longest matching.
|
|
If P_MATCH_FIRST is not NULL, and the match fails, it is set to the
|
|
next place where we may want to try matching.
|
|
Note that the matcher assume that the maching starts from the current
|
|
index of the buffer. */
|
|
|
|
static int
|
|
internal_function
|
|
check_matching (re_match_context_t *mctx, int fl_longest_match,
|
|
int *p_match_first)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
reg_errcode_t err;
|
|
int match = 0;
|
|
int match_last = -1;
|
|
int cur_str_idx = re_string_cur_idx (&mctx->input);
|
|
re_dfastate_t *cur_state;
|
|
int at_init_state = p_match_first != NULL;
|
|
int next_start_idx = cur_str_idx;
|
|
|
|
err = REG_NOERROR;
|
|
cur_state = acquire_init_state_context (&err, mctx, cur_str_idx);
|
|
/* An initial state must not be NULL (invalid). */
|
|
if (BE (cur_state == NULL, 0))
|
|
{
|
|
assert (err == REG_ESPACE);
|
|
return -2;
|
|
}
|
|
|
|
if (mctx->state_log != NULL)
|
|
{
|
|
mctx->state_log[cur_str_idx] = cur_state;
|
|
|
|
/* Check OP_OPEN_SUBEXP in the initial state in case that we use them
|
|
later. E.g. Processing back references. */
|
|
if (BE (dfa->nbackref, 0))
|
|
{
|
|
at_init_state = 0;
|
|
err = check_subexp_matching_top (mctx, &cur_state->nodes, 0);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
|
|
if (cur_state->has_backref)
|
|
{
|
|
err = transit_state_bkref (mctx, &cur_state->nodes);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If the RE accepts NULL string. */
|
|
if (BE (cur_state->halt, 0))
|
|
{
|
|
if (!cur_state->has_constraint
|
|
|| check_halt_state_context (mctx, cur_state, cur_str_idx))
|
|
{
|
|
if (!fl_longest_match)
|
|
return cur_str_idx;
|
|
else
|
|
{
|
|
match_last = cur_str_idx;
|
|
match = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
while (!re_string_eoi (&mctx->input))
|
|
{
|
|
re_dfastate_t *old_state = cur_state;
|
|
int next_char_idx = re_string_cur_idx (&mctx->input) + 1;
|
|
|
|
if (BE (next_char_idx >= mctx->input.bufs_len, 0)
|
|
|| (BE (next_char_idx >= mctx->input.valid_len, 0)
|
|
&& mctx->input.valid_len < mctx->input.len))
|
|
{
|
|
err = extend_buffers (mctx);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
{
|
|
assert (err == REG_ESPACE);
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
cur_state = transit_state (&err, mctx, cur_state);
|
|
if (mctx->state_log != NULL)
|
|
cur_state = merge_state_with_log (&err, mctx, cur_state);
|
|
|
|
if (cur_state == NULL)
|
|
{
|
|
/* Reached the invalid state or an error. Try to recover a valid
|
|
state using the state log, if available and if we have not
|
|
already found a valid (even if not the longest) match. */
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return -2;
|
|
|
|
if (mctx->state_log == NULL
|
|
|| (match && !fl_longest_match)
|
|
|| (cur_state = find_recover_state (&err, mctx)) == NULL)
|
|
break;
|
|
}
|
|
|
|
if (BE (at_init_state, 0))
|
|
{
|
|
if (old_state == cur_state)
|
|
next_start_idx = next_char_idx;
|
|
else
|
|
at_init_state = 0;
|
|
}
|
|
|
|
if (cur_state->halt)
|
|
{
|
|
/* Reached a halt state.
|
|
Check the halt state can satisfy the current context. */
|
|
if (!cur_state->has_constraint
|
|
|| check_halt_state_context (mctx, cur_state,
|
|
re_string_cur_idx (&mctx->input)))
|
|
{
|
|
/* We found an appropriate halt state. */
|
|
match_last = re_string_cur_idx (&mctx->input);
|
|
match = 1;
|
|
|
|
/* We found a match, do not modify match_first below. */
|
|
p_match_first = NULL;
|
|
if (!fl_longest_match)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (p_match_first)
|
|
*p_match_first += next_start_idx;
|
|
|
|
return match_last;
|
|
}
|
|
|
|
/* Check NODE match the current context. */
|
|
|
|
static int
|
|
internal_function
|
|
check_halt_node_context (const re_dfa_t *dfa, int node, unsigned int context)
|
|
{
|
|
re_token_type_t type = dfa->nodes[node].type;
|
|
unsigned int constraint = dfa->nodes[node].constraint;
|
|
if (type != END_OF_RE)
|
|
return 0;
|
|
if (!constraint)
|
|
return 1;
|
|
if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Check the halt state STATE match the current context.
|
|
Return 0 if not match, if the node, STATE has, is a halt node and
|
|
match the context, return the node. */
|
|
|
|
static int
|
|
internal_function
|
|
check_halt_state_context (const re_match_context_t *mctx,
|
|
const re_dfastate_t *state, int idx)
|
|
{
|
|
int i;
|
|
unsigned int context;
|
|
#ifdef DEBUG
|
|
assert (state->halt);
|
|
#endif
|
|
context = re_string_context_at (&mctx->input, idx, mctx->eflags);
|
|
for (i = 0; i < state->nodes.nelem; ++i)
|
|
if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context))
|
|
return state->nodes.elems[i];
|
|
return 0;
|
|
}
|
|
|
|
/* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA
|
|
corresponding to the DFA).
|
|
Return the destination node, and update EPS_VIA_NODES, return -1 in case
|
|
of errors. */
|
|
|
|
static int
|
|
internal_function
|
|
proceed_next_node (const re_match_context_t *mctx, int nregs, regmatch_t *regs,
|
|
int *pidx, int node, re_node_set *eps_via_nodes,
|
|
struct re_fail_stack_t *fs)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
int i, err;
|
|
if (IS_EPSILON_NODE (dfa->nodes[node].type))
|
|
{
|
|
re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes;
|
|
re_node_set *edests = &dfa->edests[node];
|
|
int dest_node;
|
|
err = re_node_set_insert (eps_via_nodes, node);
|
|
if (BE (err < 0, 0))
|
|
return -2;
|
|
/* Pick up a valid destination, or return -1 if none is found. */
|
|
for (dest_node = -1, i = 0; i < edests->nelem; ++i)
|
|
{
|
|
int candidate = edests->elems[i];
|
|
if (!re_node_set_contains (cur_nodes, candidate))
|
|
continue;
|
|
if (dest_node == -1)
|
|
dest_node = candidate;
|
|
|
|
else
|
|
{
|
|
/* In order to avoid infinite loop like "(a*)*", return the second
|
|
epsilon-transition if the first was already considered. */
|
|
if (re_node_set_contains (eps_via_nodes, dest_node))
|
|
return candidate;
|
|
|
|
/* Otherwise, push the second epsilon-transition on the fail stack. */
|
|
else if (fs != NULL
|
|
&& push_fail_stack (fs, *pidx, candidate, nregs, regs,
|
|
eps_via_nodes))
|
|
return -2;
|
|
|
|
/* We know we are going to exit. */
|
|
break;
|
|
}
|
|
}
|
|
return dest_node;
|
|
}
|
|
else
|
|
{
|
|
int naccepted = 0;
|
|
re_token_type_t type = dfa->nodes[node].type;
|
|
|
|
#ifdef RE_ENABLE_I18N
|
|
if (dfa->nodes[node].accept_mb)
|
|
naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx);
|
|
else
|
|
#endif /* RE_ENABLE_I18N */
|
|
if (type == OP_BACK_REF)
|
|
{
|
|
int subexp_idx = dfa->nodes[node].opr.idx + 1;
|
|
naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so;
|
|
if (fs != NULL)
|
|
{
|
|
if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1)
|
|
return -1;
|
|
else if (naccepted)
|
|
{
|
|
char *buf = (char *) re_string_get_buffer (&mctx->input);
|
|
if (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx,
|
|
naccepted) != 0)
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (naccepted == 0)
|
|
{
|
|
int dest_node;
|
|
err = re_node_set_insert (eps_via_nodes, node);
|
|
if (BE (err < 0, 0))
|
|
return -2;
|
|
dest_node = dfa->edests[node].elems[0];
|
|
if (re_node_set_contains (&mctx->state_log[*pidx]->nodes,
|
|
dest_node))
|
|
return dest_node;
|
|
}
|
|
}
|
|
|
|
if (naccepted != 0
|
|
|| check_node_accept (mctx, dfa->nodes + node, *pidx))
|
|
{
|
|
int dest_node = dfa->nexts[node];
|
|
*pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted;
|
|
if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL
|
|
|| !re_node_set_contains (&mctx->state_log[*pidx]->nodes,
|
|
dest_node)))
|
|
return -1;
|
|
re_node_set_empty (eps_via_nodes);
|
|
return dest_node;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
push_fail_stack (struct re_fail_stack_t *fs, int str_idx, int dest_node,
|
|
int nregs, regmatch_t *regs, re_node_set *eps_via_nodes)
|
|
{
|
|
reg_errcode_t err;
|
|
int num = fs->num++;
|
|
if (fs->num == fs->alloc)
|
|
{
|
|
struct re_fail_stack_ent_t *new_array;
|
|
new_array = realloc (fs->stack, (sizeof (struct re_fail_stack_ent_t)
|
|
* fs->alloc * 2));
|
|
if (new_array == NULL)
|
|
return REG_ESPACE;
|
|
fs->alloc *= 2;
|
|
fs->stack = new_array;
|
|
}
|
|
fs->stack[num].idx = str_idx;
|
|
fs->stack[num].node = dest_node;
|
|
fs->stack[num].regs = re_malloc (regmatch_t, nregs);
|
|
if (fs->stack[num].regs == NULL)
|
|
return REG_ESPACE;
|
|
memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs);
|
|
err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes);
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
internal_function
|
|
pop_fail_stack (struct re_fail_stack_t *fs, int *pidx, int nregs,
|
|
regmatch_t *regs, re_node_set *eps_via_nodes)
|
|
{
|
|
int num = --fs->num;
|
|
assert (num >= 0);
|
|
*pidx = fs->stack[num].idx;
|
|
memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs);
|
|
re_node_set_free (eps_via_nodes);
|
|
re_free (fs->stack[num].regs);
|
|
*eps_via_nodes = fs->stack[num].eps_via_nodes;
|
|
return fs->stack[num].node;
|
|
}
|
|
|
|
/* Set the positions where the subexpressions are starts/ends to registers
|
|
PMATCH.
|
|
Note: We assume that pmatch[0] is already set, and
|
|
pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch. */
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
set_regs (const regex_t *preg, const re_match_context_t *mctx, size_t nmatch,
|
|
regmatch_t *pmatch, int fl_backtrack)
|
|
{
|
|
const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer;
|
|
int idx, cur_node;
|
|
re_node_set eps_via_nodes;
|
|
struct re_fail_stack_t *fs;
|
|
struct re_fail_stack_t fs_body = { 0, 2, NULL };
|
|
regmatch_t *prev_idx_match;
|
|
int prev_idx_match_malloced = 0;
|
|
|
|
#ifdef DEBUG
|
|
assert (nmatch > 1);
|
|
assert (mctx->state_log != NULL);
|
|
#endif
|
|
if (fl_backtrack)
|
|
{
|
|
fs = &fs_body;
|
|
fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc);
|
|
if (fs->stack == NULL)
|
|
return REG_ESPACE;
|
|
}
|
|
else
|
|
fs = NULL;
|
|
|
|
cur_node = dfa->init_node;
|
|
re_node_set_init_empty (&eps_via_nodes);
|
|
|
|
#ifdef HAVE_ALLOCA
|
|
if (__libc_use_alloca (nmatch * sizeof (regmatch_t)))
|
|
prev_idx_match = (regmatch_t *) alloca (nmatch * sizeof (regmatch_t));
|
|
else
|
|
#endif
|
|
{
|
|
prev_idx_match = re_malloc (regmatch_t, nmatch);
|
|
if (prev_idx_match == NULL)
|
|
{
|
|
free_fail_stack_return (fs);
|
|
return REG_ESPACE;
|
|
}
|
|
prev_idx_match_malloced = 1;
|
|
}
|
|
memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch);
|
|
|
|
for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;)
|
|
{
|
|
update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch);
|
|
|
|
if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node)
|
|
{
|
|
int reg_idx;
|
|
if (fs)
|
|
{
|
|
for (reg_idx = 0; reg_idx < nmatch; ++reg_idx)
|
|
if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1)
|
|
break;
|
|
if (reg_idx == nmatch)
|
|
{
|
|
re_node_set_free (&eps_via_nodes);
|
|
if (prev_idx_match_malloced)
|
|
re_free (prev_idx_match);
|
|
return free_fail_stack_return (fs);
|
|
}
|
|
cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch,
|
|
&eps_via_nodes);
|
|
}
|
|
else
|
|
{
|
|
re_node_set_free (&eps_via_nodes);
|
|
if (prev_idx_match_malloced)
|
|
re_free (prev_idx_match);
|
|
return REG_NOERROR;
|
|
}
|
|
}
|
|
|
|
/* Proceed to next node. */
|
|
cur_node = proceed_next_node (mctx, nmatch, pmatch, &idx, cur_node,
|
|
&eps_via_nodes, fs);
|
|
|
|
if (BE (cur_node < 0, 0))
|
|
{
|
|
if (BE (cur_node == -2, 0))
|
|
{
|
|
re_node_set_free (&eps_via_nodes);
|
|
if (prev_idx_match_malloced)
|
|
re_free (prev_idx_match);
|
|
free_fail_stack_return (fs);
|
|
return REG_ESPACE;
|
|
}
|
|
if (fs)
|
|
cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch,
|
|
&eps_via_nodes);
|
|
else
|
|
{
|
|
re_node_set_free (&eps_via_nodes);
|
|
if (prev_idx_match_malloced)
|
|
re_free (prev_idx_match);
|
|
return REG_NOMATCH;
|
|
}
|
|
}
|
|
}
|
|
re_node_set_free (&eps_via_nodes);
|
|
if (prev_idx_match_malloced)
|
|
re_free (prev_idx_match);
|
|
return free_fail_stack_return (fs);
|
|
}
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
free_fail_stack_return (struct re_fail_stack_t *fs)
|
|
{
|
|
if (fs)
|
|
{
|
|
int fs_idx;
|
|
for (fs_idx = 0; fs_idx < fs->num; ++fs_idx)
|
|
{
|
|
re_node_set_free (&fs->stack[fs_idx].eps_via_nodes);
|
|
re_free (fs->stack[fs_idx].regs);
|
|
}
|
|
re_free (fs->stack);
|
|
}
|
|
return REG_NOERROR;
|
|
}
|
|
|
|
static void
|
|
internal_function
|
|
update_regs (const re_dfa_t *dfa, regmatch_t *pmatch,
|
|
regmatch_t *prev_idx_match, int cur_node, int cur_idx, int nmatch)
|
|
{
|
|
int type = dfa->nodes[cur_node].type;
|
|
if (type == OP_OPEN_SUBEXP)
|
|
{
|
|
int reg_num = dfa->nodes[cur_node].opr.idx + 1;
|
|
|
|
/* We are at the first node of this sub expression. */
|
|
if (reg_num < nmatch)
|
|
{
|
|
pmatch[reg_num].rm_so = cur_idx;
|
|
pmatch[reg_num].rm_eo = -1;
|
|
}
|
|
}
|
|
else if (type == OP_CLOSE_SUBEXP)
|
|
{
|
|
int reg_num = dfa->nodes[cur_node].opr.idx + 1;
|
|
if (reg_num < nmatch)
|
|
{
|
|
/* We are at the last node of this sub expression. */
|
|
if (pmatch[reg_num].rm_so < cur_idx)
|
|
{
|
|
pmatch[reg_num].rm_eo = cur_idx;
|
|
/* This is a non-empty match or we are not inside an optional
|
|
subexpression. Accept this right away. */
|
|
memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch);
|
|
}
|
|
else
|
|
{
|
|
if (dfa->nodes[cur_node].opt_subexp
|
|
&& prev_idx_match[reg_num].rm_so != -1)
|
|
/* We transited through an empty match for an optional
|
|
subexpression, like (a?)*, and this is not the subexp's
|
|
first match. Copy back the old content of the registers
|
|
so that matches of an inner subexpression are undone as
|
|
well, like in ((a?))*. */
|
|
memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch);
|
|
else
|
|
/* We completed a subexpression, but it may be part of
|
|
an optional one, so do not update PREV_IDX_MATCH. */
|
|
pmatch[reg_num].rm_eo = cur_idx;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* This function checks the STATE_LOG from the SCTX->last_str_idx to 0
|
|
and sift the nodes in each states according to the following rules.
|
|
Updated state_log will be wrote to STATE_LOG.
|
|
|
|
Rules: We throw away the Node `a' in the STATE_LOG[STR_IDX] if...
|
|
1. When STR_IDX == MATCH_LAST(the last index in the state_log):
|
|
If `a' isn't the LAST_NODE and `a' can't epsilon transit to
|
|
the LAST_NODE, we throw away the node `a'.
|
|
2. When 0 <= STR_IDX < MATCH_LAST and `a' accepts
|
|
string `s' and transit to `b':
|
|
i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw
|
|
away the node `a'.
|
|
ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is
|
|
thrown away, we throw away the node `a'.
|
|
3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b':
|
|
i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the
|
|
node `a'.
|
|
ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away,
|
|
we throw away the node `a'. */
|
|
|
|
#define STATE_NODE_CONTAINS(state,node) \
|
|
((state) != NULL && re_node_set_contains (&(state)->nodes, node))
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
sift_states_backward (const re_match_context_t *mctx, re_sift_context_t *sctx)
|
|
{
|
|
reg_errcode_t err;
|
|
int null_cnt = 0;
|
|
int str_idx = sctx->last_str_idx;
|
|
re_node_set cur_dest;
|
|
|
|
#ifdef DEBUG
|
|
assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL);
|
|
#endif
|
|
|
|
/* Build sifted state_log[str_idx]. It has the nodes which can epsilon
|
|
transit to the last_node and the last_node itself. */
|
|
err = re_node_set_init_1 (&cur_dest, sctx->last_node);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
goto free_return;
|
|
|
|
/* Then check each states in the state_log. */
|
|
while (str_idx > 0)
|
|
{
|
|
/* Update counters. */
|
|
null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0;
|
|
if (null_cnt > mctx->max_mb_elem_len)
|
|
{
|
|
memset (sctx->sifted_states, '\0',
|
|
sizeof (re_dfastate_t *) * str_idx);
|
|
re_node_set_free (&cur_dest);
|
|
return REG_NOERROR;
|
|
}
|
|
re_node_set_empty (&cur_dest);
|
|
--str_idx;
|
|
|
|
if (mctx->state_log[str_idx])
|
|
{
|
|
err = build_sifted_states (mctx, sctx, str_idx, &cur_dest);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
goto free_return;
|
|
}
|
|
|
|
/* Add all the nodes which satisfy the following conditions:
|
|
- It can epsilon transit to a node in CUR_DEST.
|
|
- It is in CUR_SRC.
|
|
And update state_log. */
|
|
err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
goto free_return;
|
|
}
|
|
err = REG_NOERROR;
|
|
free_return:
|
|
re_node_set_free (&cur_dest);
|
|
return err;
|
|
}
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
build_sifted_states (const re_match_context_t *mctx, re_sift_context_t *sctx,
|
|
int str_idx, re_node_set *cur_dest)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
const re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes;
|
|
int i;
|
|
|
|
/* Then build the next sifted state.
|
|
We build the next sifted state on `cur_dest', and update
|
|
`sifted_states[str_idx]' with `cur_dest'.
|
|
Note:
|
|
`cur_dest' is the sifted state from `state_log[str_idx + 1]'.
|
|
`cur_src' points the node_set of the old `state_log[str_idx]'
|
|
(with the epsilon nodes pre-filtered out). */
|
|
for (i = 0; i < cur_src->nelem; i++)
|
|
{
|
|
int prev_node = cur_src->elems[i];
|
|
int naccepted = 0;
|
|
int ret;
|
|
|
|
#ifdef DEBUG
|
|
re_token_type_t type = dfa->nodes[prev_node].type;
|
|
assert (!IS_EPSILON_NODE (type));
|
|
#endif
|
|
#ifdef RE_ENABLE_I18N
|
|
/* If the node may accept `multi byte'. */
|
|
if (dfa->nodes[prev_node].accept_mb)
|
|
naccepted = sift_states_iter_mb (mctx, sctx, prev_node,
|
|
str_idx, sctx->last_str_idx);
|
|
#endif /* RE_ENABLE_I18N */
|
|
|
|
/* We don't check backreferences here.
|
|
See update_cur_sifted_state(). */
|
|
if (!naccepted
|
|
&& check_node_accept (mctx, dfa->nodes + prev_node, str_idx)
|
|
&& STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1],
|
|
dfa->nexts[prev_node]))
|
|
naccepted = 1;
|
|
|
|
if (naccepted == 0)
|
|
continue;
|
|
|
|
if (sctx->limits.nelem)
|
|
{
|
|
int to_idx = str_idx + naccepted;
|
|
if (check_dst_limits (mctx, &sctx->limits,
|
|
dfa->nexts[prev_node], to_idx,
|
|
prev_node, str_idx))
|
|
continue;
|
|
}
|
|
ret = re_node_set_insert (cur_dest, prev_node);
|
|
if (BE (ret == -1, 0))
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
return REG_NOERROR;
|
|
}
|
|
|
|
/* Helper functions. */
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
clean_state_log_if_needed (re_match_context_t *mctx, int next_state_log_idx)
|
|
{
|
|
int top = mctx->state_log_top;
|
|
|
|
if (next_state_log_idx >= mctx->input.bufs_len
|
|
|| (next_state_log_idx >= mctx->input.valid_len
|
|
&& mctx->input.valid_len < mctx->input.len))
|
|
{
|
|
reg_errcode_t err;
|
|
err = extend_buffers (mctx);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
}
|
|
|
|
if (top < next_state_log_idx)
|
|
{
|
|
memset (mctx->state_log + top + 1, '\0',
|
|
sizeof (re_dfastate_t *) * (next_state_log_idx - top));
|
|
mctx->state_log_top = next_state_log_idx;
|
|
}
|
|
return REG_NOERROR;
|
|
}
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
merge_state_array (const re_dfa_t *dfa, re_dfastate_t **dst,
|
|
re_dfastate_t **src, int num)
|
|
{
|
|
int st_idx;
|
|
reg_errcode_t err;
|
|
for (st_idx = 0; st_idx < num; ++st_idx)
|
|
{
|
|
if (dst[st_idx] == NULL)
|
|
dst[st_idx] = src[st_idx];
|
|
else if (src[st_idx] != NULL)
|
|
{
|
|
re_node_set merged_set;
|
|
err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes,
|
|
&src[st_idx]->nodes);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
dst[st_idx] = re_acquire_state (&err, dfa, &merged_set);
|
|
re_node_set_free (&merged_set);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
}
|
|
}
|
|
return REG_NOERROR;
|
|
}
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
update_cur_sifted_state (const re_match_context_t *mctx,
|
|
re_sift_context_t *sctx, int str_idx,
|
|
re_node_set *dest_nodes)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
reg_errcode_t err = REG_NOERROR;
|
|
const re_node_set *candidates;
|
|
candidates = ((mctx->state_log[str_idx] == NULL) ? NULL
|
|
: &mctx->state_log[str_idx]->nodes);
|
|
|
|
if (dest_nodes->nelem == 0)
|
|
sctx->sifted_states[str_idx] = NULL;
|
|
else
|
|
{
|
|
if (candidates)
|
|
{
|
|
/* At first, add the nodes which can epsilon transit to a node in
|
|
DEST_NODE. */
|
|
err = add_epsilon_src_nodes (dfa, dest_nodes, candidates);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
|
|
/* Then, check the limitations in the current sift_context. */
|
|
if (sctx->limits.nelem)
|
|
{
|
|
err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits,
|
|
mctx->bkref_ents, str_idx);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
}
|
|
}
|
|
|
|
sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
}
|
|
|
|
if (candidates && mctx->state_log[str_idx]->has_backref)
|
|
{
|
|
err = sift_states_bkref (mctx, sctx, str_idx, candidates);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
}
|
|
return REG_NOERROR;
|
|
}
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
add_epsilon_src_nodes (const re_dfa_t *dfa, re_node_set *dest_nodes,
|
|
const re_node_set *candidates)
|
|
{
|
|
reg_errcode_t err = REG_NOERROR;
|
|
int i;
|
|
|
|
re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
|
|
if (!state->inveclosure.alloc)
|
|
{
|
|
err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return REG_ESPACE;
|
|
for (i = 0; i < dest_nodes->nelem; i++)
|
|
{
|
|
err = re_node_set_merge (&state->inveclosure,
|
|
dfa->inveclosures + dest_nodes->elems[i]);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return REG_ESPACE;
|
|
}
|
|
}
|
|
return re_node_set_add_intersect (dest_nodes, candidates,
|
|
&state->inveclosure);
|
|
}
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
sub_epsilon_src_nodes (const re_dfa_t *dfa, int node, re_node_set *dest_nodes,
|
|
const re_node_set *candidates)
|
|
{
|
|
int ecl_idx;
|
|
reg_errcode_t err;
|
|
re_node_set *inv_eclosure = dfa->inveclosures + node;
|
|
re_node_set except_nodes;
|
|
re_node_set_init_empty (&except_nodes);
|
|
for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx)
|
|
{
|
|
int cur_node = inv_eclosure->elems[ecl_idx];
|
|
if (cur_node == node)
|
|
continue;
|
|
if (IS_EPSILON_NODE (dfa->nodes[cur_node].type))
|
|
{
|
|
int edst1 = dfa->edests[cur_node].elems[0];
|
|
int edst2 = ((dfa->edests[cur_node].nelem > 1)
|
|
? dfa->edests[cur_node].elems[1] : -1);
|
|
if ((!re_node_set_contains (inv_eclosure, edst1)
|
|
&& re_node_set_contains (dest_nodes, edst1))
|
|
|| (edst2 > 0
|
|
&& !re_node_set_contains (inv_eclosure, edst2)
|
|
&& re_node_set_contains (dest_nodes, edst2)))
|
|
{
|
|
err = re_node_set_add_intersect (&except_nodes, candidates,
|
|
dfa->inveclosures + cur_node);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
{
|
|
re_node_set_free (&except_nodes);
|
|
return err;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx)
|
|
{
|
|
int cur_node = inv_eclosure->elems[ecl_idx];
|
|
if (!re_node_set_contains (&except_nodes, cur_node))
|
|
{
|
|
int idx = re_node_set_contains (dest_nodes, cur_node) - 1;
|
|
re_node_set_remove_at (dest_nodes, idx);
|
|
}
|
|
}
|
|
re_node_set_free (&except_nodes);
|
|
return REG_NOERROR;
|
|
}
|
|
|
|
static int
|
|
internal_function
|
|
check_dst_limits (const re_match_context_t *mctx, re_node_set *limits,
|
|
int dst_node, int dst_idx, int src_node, int src_idx)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
int lim_idx, src_pos, dst_pos;
|
|
|
|
int dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx);
|
|
int src_bkref_idx = search_cur_bkref_entry (mctx, src_idx);
|
|
for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx)
|
|
{
|
|
int subexp_idx;
|
|
struct re_backref_cache_entry *ent;
|
|
ent = mctx->bkref_ents + limits->elems[lim_idx];
|
|
subexp_idx = dfa->nodes[ent->node].opr.idx;
|
|
|
|
dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx],
|
|
subexp_idx, dst_node, dst_idx,
|
|
dst_bkref_idx);
|
|
src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx],
|
|
subexp_idx, src_node, src_idx,
|
|
src_bkref_idx);
|
|
|
|
/* In case of:
|
|
<src> <dst> ( <subexp> )
|
|
( <subexp> ) <src> <dst>
|
|
( <subexp1> <src> <subexp2> <dst> <subexp3> ) */
|
|
if (src_pos == dst_pos)
|
|
continue; /* This is unrelated limitation. */
|
|
else
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
internal_function
|
|
check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, int boundaries,
|
|
int subexp_idx, int from_node, int bkref_idx)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
const re_node_set *eclosures = dfa->eclosures + from_node;
|
|
int node_idx;
|
|
|
|
/* Else, we are on the boundary: examine the nodes on the epsilon
|
|
closure. */
|
|
for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx)
|
|
{
|
|
int node = eclosures->elems[node_idx];
|
|
switch (dfa->nodes[node].type)
|
|
{
|
|
case OP_BACK_REF:
|
|
if (bkref_idx != -1)
|
|
{
|
|
struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx;
|
|
do
|
|
{
|
|
int dst, cpos;
|
|
|
|
if (ent->node != node)
|
|
continue;
|
|
|
|
if (subexp_idx < BITSET_WORD_BITS
|
|
&& !(ent->eps_reachable_subexps_map
|
|
& ((bitset_word_t) 1 << subexp_idx)))
|
|
continue;
|
|
|
|
/* Recurse trying to reach the OP_OPEN_SUBEXP and
|
|
OP_CLOSE_SUBEXP cases below. But, if the
|
|
destination node is the same node as the source
|
|
node, don't recurse because it would cause an
|
|
infinite loop: a regex that exhibits this behavior
|
|
is ()\1*\1* */
|
|
dst = dfa->edests[node].elems[0];
|
|
if (dst == from_node)
|
|
{
|
|
if (boundaries & 1)
|
|
return -1;
|
|
else /* if (boundaries & 2) */
|
|
return 0;
|
|
}
|
|
|
|
cpos =
|
|
check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx,
|
|
dst, bkref_idx);
|
|
if (cpos == -1 /* && (boundaries & 1) */)
|
|
return -1;
|
|
if (cpos == 0 && (boundaries & 2))
|
|
return 0;
|
|
|
|
if (subexp_idx < BITSET_WORD_BITS)
|
|
ent->eps_reachable_subexps_map
|
|
&= ~((bitset_word_t) 1 << subexp_idx);
|
|
}
|
|
while (ent++->more);
|
|
}
|
|
break;
|
|
|
|
case OP_OPEN_SUBEXP:
|
|
if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx)
|
|
return -1;
|
|
break;
|
|
|
|
case OP_CLOSE_SUBEXP:
|
|
if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx)
|
|
return 0;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (boundaries & 2) ? 1 : 0;
|
|
}
|
|
|
|
static int
|
|
internal_function
|
|
check_dst_limits_calc_pos (const re_match_context_t *mctx, int limit,
|
|
int subexp_idx, int from_node, int str_idx,
|
|
int bkref_idx)
|
|
{
|
|
struct re_backref_cache_entry *lim = mctx->bkref_ents + limit;
|
|
int boundaries;
|
|
|
|
/* If we are outside the range of the subexpression, return -1 or 1. */
|
|
if (str_idx < lim->subexp_from)
|
|
return -1;
|
|
|
|
if (lim->subexp_to < str_idx)
|
|
return 1;
|
|
|
|
/* If we are within the subexpression, return 0. */
|
|
boundaries = (str_idx == lim->subexp_from);
|
|
boundaries |= (str_idx == lim->subexp_to) << 1;
|
|
if (boundaries == 0)
|
|
return 0;
|
|
|
|
/* Else, examine epsilon closure. */
|
|
return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx,
|
|
from_node, bkref_idx);
|
|
}
|
|
|
|
/* Check the limitations of sub expressions LIMITS, and remove the nodes
|
|
which are against limitations from DEST_NODES. */
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
check_subexp_limits (const re_dfa_t *dfa, re_node_set *dest_nodes,
|
|
const re_node_set *candidates, re_node_set *limits,
|
|
struct re_backref_cache_entry *bkref_ents, int str_idx)
|
|
{
|
|
reg_errcode_t err;
|
|
int node_idx, lim_idx;
|
|
|
|
for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx)
|
|
{
|
|
int subexp_idx;
|
|
struct re_backref_cache_entry *ent;
|
|
ent = bkref_ents + limits->elems[lim_idx];
|
|
|
|
if (str_idx <= ent->subexp_from || ent->str_idx < str_idx)
|
|
continue; /* This is unrelated limitation. */
|
|
|
|
subexp_idx = dfa->nodes[ent->node].opr.idx;
|
|
if (ent->subexp_to == str_idx)
|
|
{
|
|
int ops_node = -1;
|
|
int cls_node = -1;
|
|
for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
|
|
{
|
|
int node = dest_nodes->elems[node_idx];
|
|
re_token_type_t type = dfa->nodes[node].type;
|
|
if (type == OP_OPEN_SUBEXP
|
|
&& subexp_idx == dfa->nodes[node].opr.idx)
|
|
ops_node = node;
|
|
else if (type == OP_CLOSE_SUBEXP
|
|
&& subexp_idx == dfa->nodes[node].opr.idx)
|
|
cls_node = node;
|
|
}
|
|
|
|
/* Check the limitation of the open subexpression. */
|
|
/* Note that (ent->subexp_to = str_idx != ent->subexp_from). */
|
|
if (ops_node >= 0)
|
|
{
|
|
err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes,
|
|
candidates);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
}
|
|
|
|
/* Check the limitation of the close subexpression. */
|
|
if (cls_node >= 0)
|
|
for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
|
|
{
|
|
int node = dest_nodes->elems[node_idx];
|
|
if (!re_node_set_contains (dfa->inveclosures + node,
|
|
cls_node)
|
|
&& !re_node_set_contains (dfa->eclosures + node,
|
|
cls_node))
|
|
{
|
|
/* It is against this limitation.
|
|
Remove it form the current sifted state. */
|
|
err = sub_epsilon_src_nodes (dfa, node, dest_nodes,
|
|
candidates);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
--node_idx;
|
|
}
|
|
}
|
|
}
|
|
else /* (ent->subexp_to != str_idx) */
|
|
{
|
|
for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
|
|
{
|
|
int node = dest_nodes->elems[node_idx];
|
|
re_token_type_t type = dfa->nodes[node].type;
|
|
if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP)
|
|
{
|
|
if (subexp_idx != dfa->nodes[node].opr.idx)
|
|
continue;
|
|
/* It is against this limitation.
|
|
Remove it form the current sifted state. */
|
|
err = sub_epsilon_src_nodes (dfa, node, dest_nodes,
|
|
candidates);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return REG_NOERROR;
|
|
}
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
sift_states_bkref (const re_match_context_t *mctx, re_sift_context_t *sctx,
|
|
int str_idx, const re_node_set *candidates)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
reg_errcode_t err;
|
|
int node_idx, node;
|
|
re_sift_context_t local_sctx;
|
|
int first_idx = search_cur_bkref_entry (mctx, str_idx);
|
|
|
|
if (first_idx == -1)
|
|
return REG_NOERROR;
|
|
|
|
local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized. */
|
|
|
|
for (node_idx = 0; node_idx < candidates->nelem; ++node_idx)
|
|
{
|
|
int enabled_idx;
|
|
re_token_type_t type;
|
|
struct re_backref_cache_entry *entry;
|
|
node = candidates->elems[node_idx];
|
|
type = dfa->nodes[node].type;
|
|
/* Avoid infinite loop for the REs like "()\1+". */
|
|
if (node == sctx->last_node && str_idx == sctx->last_str_idx)
|
|
continue;
|
|
if (type != OP_BACK_REF)
|
|
continue;
|
|
|
|
entry = mctx->bkref_ents + first_idx;
|
|
enabled_idx = first_idx;
|
|
do
|
|
{
|
|
int subexp_len;
|
|
int to_idx;
|
|
int dst_node;
|
|
int ret;
|
|
re_dfastate_t *cur_state;
|
|
|
|
if (entry->node != node)
|
|
continue;
|
|
subexp_len = entry->subexp_to - entry->subexp_from;
|
|
to_idx = str_idx + subexp_len;
|
|
dst_node = (subexp_len ? dfa->nexts[node]
|
|
: dfa->edests[node].elems[0]);
|
|
|
|
if (to_idx > sctx->last_str_idx
|
|
|| sctx->sifted_states[to_idx] == NULL
|
|
|| !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node)
|
|
|| check_dst_limits (mctx, &sctx->limits, node,
|
|
str_idx, dst_node, to_idx))
|
|
continue;
|
|
|
|
if (local_sctx.sifted_states == NULL)
|
|
{
|
|
local_sctx = *sctx;
|
|
err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
goto free_return;
|
|
}
|
|
local_sctx.last_node = node;
|
|
local_sctx.last_str_idx = str_idx;
|
|
ret = re_node_set_insert (&local_sctx.limits, enabled_idx);
|
|
if (BE (ret < 0, 0))
|
|
{
|
|
err = REG_ESPACE;
|
|
goto free_return;
|
|
}
|
|
cur_state = local_sctx.sifted_states[str_idx];
|
|
err = sift_states_backward (mctx, &local_sctx);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
goto free_return;
|
|
if (sctx->limited_states != NULL)
|
|
{
|
|
err = merge_state_array (dfa, sctx->limited_states,
|
|
local_sctx.sifted_states,
|
|
str_idx + 1);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
goto free_return;
|
|
}
|
|
local_sctx.sifted_states[str_idx] = cur_state;
|
|
re_node_set_remove (&local_sctx.limits, enabled_idx);
|
|
|
|
/* mctx->bkref_ents may have changed, reload the pointer. */
|
|
entry = mctx->bkref_ents + enabled_idx;
|
|
}
|
|
while (enabled_idx++, entry++->more);
|
|
}
|
|
err = REG_NOERROR;
|
|
free_return:
|
|
if (local_sctx.sifted_states != NULL)
|
|
{
|
|
re_node_set_free (&local_sctx.limits);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
|
|
#ifdef RE_ENABLE_I18N
|
|
static int
|
|
internal_function
|
|
sift_states_iter_mb (const re_match_context_t *mctx, re_sift_context_t *sctx,
|
|
int node_idx, int str_idx, int max_str_idx)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
int naccepted;
|
|
/* Check the node can accept `multi byte'. */
|
|
naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx);
|
|
if (naccepted > 0 && str_idx + naccepted <= max_str_idx &&
|
|
!STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted],
|
|
dfa->nexts[node_idx]))
|
|
/* The node can't accept the `multi byte', or the
|
|
destination was already thrown away, then the node
|
|
could't accept the current input `multi byte'. */
|
|
naccepted = 0;
|
|
/* Otherwise, it is sure that the node could accept
|
|
`naccepted' bytes input. */
|
|
return naccepted;
|
|
}
|
|
#endif /* RE_ENABLE_I18N */
|
|
|
|
|
|
/* Functions for state transition. */
|
|
|
|
/* Return the next state to which the current state STATE will transit by
|
|
accepting the current input byte, and update STATE_LOG if necessary.
|
|
If STATE can accept a multibyte char/collating element/back reference
|
|
update the destination of STATE_LOG. */
|
|
|
|
static re_dfastate_t *
|
|
internal_function
|
|
transit_state (reg_errcode_t *err, re_match_context_t *mctx,
|
|
re_dfastate_t *state)
|
|
{
|
|
re_dfastate_t **trtable;
|
|
unsigned char ch;
|
|
|
|
#ifdef RE_ENABLE_I18N
|
|
/* If the current state can accept multibyte. */
|
|
if (BE (state->accept_mb, 0))
|
|
{
|
|
*err = transit_state_mb (mctx, state);
|
|
if (BE (*err != REG_NOERROR, 0))
|
|
return NULL;
|
|
}
|
|
#endif /* RE_ENABLE_I18N */
|
|
|
|
/* Then decide the next state with the single byte. */
|
|
#if 0
|
|
if (0)
|
|
/* don't use transition table */
|
|
return transit_state_sb (err, mctx, state);
|
|
#endif
|
|
|
|
/* Use transition table */
|
|
ch = re_string_fetch_byte (&mctx->input);
|
|
for (;;)
|
|
{
|
|
trtable = state->trtable;
|
|
if (BE (trtable != NULL, 1))
|
|
return trtable[ch];
|
|
|
|
trtable = state->word_trtable;
|
|
if (BE (trtable != NULL, 1))
|
|
{
|
|
unsigned int context;
|
|
context
|
|
= re_string_context_at (&mctx->input,
|
|
re_string_cur_idx (&mctx->input) - 1,
|
|
mctx->eflags);
|
|
if (IS_WORD_CONTEXT (context))
|
|
return trtable[ch + SBC_MAX];
|
|
else
|
|
return trtable[ch];
|
|
}
|
|
|
|
if (!build_trtable (mctx->dfa, state))
|
|
{
|
|
*err = REG_ESPACE;
|
|
return NULL;
|
|
}
|
|
|
|
/* Retry, we now have a transition table. */
|
|
}
|
|
}
|
|
|
|
/* Update the state_log if we need */
|
|
re_dfastate_t *
|
|
internal_function
|
|
merge_state_with_log (reg_errcode_t *err, re_match_context_t *mctx,
|
|
re_dfastate_t *next_state)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
int cur_idx = re_string_cur_idx (&mctx->input);
|
|
|
|
if (cur_idx > mctx->state_log_top)
|
|
{
|
|
mctx->state_log[cur_idx] = next_state;
|
|
mctx->state_log_top = cur_idx;
|
|
}
|
|
else if (mctx->state_log[cur_idx] == 0)
|
|
{
|
|
mctx->state_log[cur_idx] = next_state;
|
|
}
|
|
else
|
|
{
|
|
re_dfastate_t *pstate;
|
|
unsigned int context;
|
|
re_node_set next_nodes, *log_nodes, *table_nodes = NULL;
|
|
/* If (state_log[cur_idx] != 0), it implies that cur_idx is
|
|
the destination of a multibyte char/collating element/
|
|
back reference. Then the next state is the union set of
|
|
these destinations and the results of the transition table. */
|
|
pstate = mctx->state_log[cur_idx];
|
|
log_nodes = pstate->entrance_nodes;
|
|
if (next_state != NULL)
|
|
{
|
|
table_nodes = next_state->entrance_nodes;
|
|
*err = re_node_set_init_union (&next_nodes, table_nodes,
|
|
log_nodes);
|
|
if (BE (*err != REG_NOERROR, 0))
|
|
return NULL;
|
|
}
|
|
else
|
|
next_nodes = *log_nodes;
|
|
/* Note: We already add the nodes of the initial state,
|
|
then we don't need to add them here. */
|
|
|
|
context = re_string_context_at (&mctx->input,
|
|
re_string_cur_idx (&mctx->input) - 1,
|
|
mctx->eflags);
|
|
next_state = mctx->state_log[cur_idx]
|
|
= re_acquire_state_context (err, dfa, &next_nodes, context);
|
|
/* We don't need to check errors here, since the return value of
|
|
this function is next_state and ERR is already set. */
|
|
|
|
if (table_nodes != NULL)
|
|
re_node_set_free (&next_nodes);
|
|
}
|
|
|
|
if (BE (dfa->nbackref, 0) && next_state != NULL)
|
|
{
|
|
/* Check OP_OPEN_SUBEXP in the current state in case that we use them
|
|
later. We must check them here, since the back references in the
|
|
next state might use them. */
|
|
*err = check_subexp_matching_top (mctx, &next_state->nodes,
|
|
cur_idx);
|
|
if (BE (*err != REG_NOERROR, 0))
|
|
return NULL;
|
|
|
|
/* If the next state has back references. */
|
|
if (next_state->has_backref)
|
|
{
|
|
*err = transit_state_bkref (mctx, &next_state->nodes);
|
|
if (BE (*err != REG_NOERROR, 0))
|
|
return NULL;
|
|
next_state = mctx->state_log[cur_idx];
|
|
}
|
|
}
|
|
|
|
return next_state;
|
|
}
|
|
|
|
/* Skip bytes in the input that correspond to part of a
|
|
multi-byte match, then look in the log for a state
|
|
from which to restart matching. */
|
|
re_dfastate_t *
|
|
internal_function
|
|
find_recover_state (reg_errcode_t *err, re_match_context_t *mctx)
|
|
{
|
|
re_dfastate_t *cur_state;
|
|
do
|
|
{
|
|
int max = mctx->state_log_top;
|
|
int cur_str_idx = re_string_cur_idx (&mctx->input);
|
|
|
|
do
|
|
{
|
|
if (++cur_str_idx > max)
|
|
return NULL;
|
|
re_string_skip_bytes (&mctx->input, 1);
|
|
}
|
|
while (mctx->state_log[cur_str_idx] == NULL);
|
|
|
|
cur_state = merge_state_with_log (err, mctx, NULL);
|
|
}
|
|
while (*err == REG_NOERROR && cur_state == NULL);
|
|
return cur_state;
|
|
}
|
|
|
|
/* Helper functions for transit_state. */
|
|
|
|
/* From the node set CUR_NODES, pick up the nodes whose types are
|
|
OP_OPEN_SUBEXP and which have corresponding back references in the regular
|
|
expression. And register them to use them later for evaluating the
|
|
correspoding back references. */
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
check_subexp_matching_top (re_match_context_t *mctx, re_node_set *cur_nodes,
|
|
int str_idx)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
int node_idx;
|
|
reg_errcode_t err;
|
|
|
|
/* TODO: This isn't efficient.
|
|
Because there might be more than one nodes whose types are
|
|
OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all
|
|
nodes.
|
|
E.g. RE: (a){2} */
|
|
for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx)
|
|
{
|
|
int node = cur_nodes->elems[node_idx];
|
|
if (dfa->nodes[node].type == OP_OPEN_SUBEXP
|
|
&& dfa->nodes[node].opr.idx < BITSET_WORD_BITS
|
|
&& (dfa->used_bkref_map
|
|
& ((bitset_word_t) 1 << dfa->nodes[node].opr.idx)))
|
|
{
|
|
err = match_ctx_add_subtop (mctx, node, str_idx);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
}
|
|
}
|
|
return REG_NOERROR;
|
|
}
|
|
|
|
#if 0
|
|
/* Return the next state to which the current state STATE will transit by
|
|
accepting the current input byte. */
|
|
|
|
static re_dfastate_t *
|
|
transit_state_sb (reg_errcode_t *err, re_match_context_t *mctx,
|
|
re_dfastate_t *state)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
re_node_set next_nodes;
|
|
re_dfastate_t *next_state;
|
|
int node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input);
|
|
unsigned int context;
|
|
|
|
*err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1);
|
|
if (BE (*err != REG_NOERROR, 0))
|
|
return NULL;
|
|
for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt)
|
|
{
|
|
int cur_node = state->nodes.elems[node_cnt];
|
|
if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx))
|
|
{
|
|
*err = re_node_set_merge (&next_nodes,
|
|
dfa->eclosures + dfa->nexts[cur_node]);
|
|
if (BE (*err != REG_NOERROR, 0))
|
|
{
|
|
re_node_set_free (&next_nodes);
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags);
|
|
next_state = re_acquire_state_context (err, dfa, &next_nodes, context);
|
|
/* We don't need to check errors here, since the return value of
|
|
this function is next_state and ERR is already set. */
|
|
|
|
re_node_set_free (&next_nodes);
|
|
re_string_skip_bytes (&mctx->input, 1);
|
|
return next_state;
|
|
}
|
|
#endif
|
|
|
|
#ifdef RE_ENABLE_I18N
|
|
static reg_errcode_t
|
|
internal_function
|
|
transit_state_mb (re_match_context_t *mctx, re_dfastate_t *pstate)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
reg_errcode_t err;
|
|
int i;
|
|
|
|
for (i = 0; i < pstate->nodes.nelem; ++i)
|
|
{
|
|
re_node_set dest_nodes, *new_nodes;
|
|
int cur_node_idx = pstate->nodes.elems[i];
|
|
int naccepted, dest_idx;
|
|
unsigned int context;
|
|
re_dfastate_t *dest_state;
|
|
|
|
if (!dfa->nodes[cur_node_idx].accept_mb)
|
|
continue;
|
|
|
|
if (dfa->nodes[cur_node_idx].constraint)
|
|
{
|
|
context = re_string_context_at (&mctx->input,
|
|
re_string_cur_idx (&mctx->input),
|
|
mctx->eflags);
|
|
if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint,
|
|
context))
|
|
continue;
|
|
}
|
|
|
|
/* How many bytes the node can accept? */
|
|
naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input,
|
|
re_string_cur_idx (&mctx->input));
|
|
if (naccepted == 0)
|
|
continue;
|
|
|
|
/* The node can accepts `naccepted' bytes. */
|
|
dest_idx = re_string_cur_idx (&mctx->input) + naccepted;
|
|
mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted
|
|
: mctx->max_mb_elem_len);
|
|
err = clean_state_log_if_needed (mctx, dest_idx);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
#ifdef DEBUG
|
|
assert (dfa->nexts[cur_node_idx] != -1);
|
|
#endif
|
|
new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx];
|
|
|
|
dest_state = mctx->state_log[dest_idx];
|
|
if (dest_state == NULL)
|
|
dest_nodes = *new_nodes;
|
|
else
|
|
{
|
|
err = re_node_set_init_union (&dest_nodes,
|
|
dest_state->entrance_nodes, new_nodes);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
}
|
|
context = re_string_context_at (&mctx->input, dest_idx - 1,
|
|
mctx->eflags);
|
|
mctx->state_log[dest_idx]
|
|
= re_acquire_state_context (&err, dfa, &dest_nodes, context);
|
|
if (dest_state != NULL)
|
|
re_node_set_free (&dest_nodes);
|
|
if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0))
|
|
return err;
|
|
}
|
|
return REG_NOERROR;
|
|
}
|
|
#endif /* RE_ENABLE_I18N */
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
transit_state_bkref (re_match_context_t *mctx, const re_node_set *nodes)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
reg_errcode_t err;
|
|
int i;
|
|
int cur_str_idx = re_string_cur_idx (&mctx->input);
|
|
|
|
for (i = 0; i < nodes->nelem; ++i)
|
|
{
|
|
int dest_str_idx, prev_nelem, bkc_idx;
|
|
int node_idx = nodes->elems[i];
|
|
unsigned int context;
|
|
const re_token_t *node = dfa->nodes + node_idx;
|
|
re_node_set *new_dest_nodes;
|
|
|
|
/* Check whether `node' is a backreference or not. */
|
|
if (node->type != OP_BACK_REF)
|
|
continue;
|
|
|
|
if (node->constraint)
|
|
{
|
|
context = re_string_context_at (&mctx->input, cur_str_idx,
|
|
mctx->eflags);
|
|
if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context))
|
|
continue;
|
|
}
|
|
|
|
/* `node' is a backreference.
|
|
Check the substring which the substring matched. */
|
|
bkc_idx = mctx->nbkref_ents;
|
|
err = get_subexp (mctx, node_idx, cur_str_idx);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
goto free_return;
|
|
|
|
/* And add the epsilon closures (which is `new_dest_nodes') of
|
|
the backreference to appropriate state_log. */
|
|
#ifdef DEBUG
|
|
assert (dfa->nexts[node_idx] != -1);
|
|
#endif
|
|
for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx)
|
|
{
|
|
int subexp_len;
|
|
re_dfastate_t *dest_state;
|
|
struct re_backref_cache_entry *bkref_ent;
|
|
bkref_ent = mctx->bkref_ents + bkc_idx;
|
|
if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx)
|
|
continue;
|
|
subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from;
|
|
new_dest_nodes = (subexp_len == 0
|
|
? dfa->eclosures + dfa->edests[node_idx].elems[0]
|
|
: dfa->eclosures + dfa->nexts[node_idx]);
|
|
dest_str_idx = (cur_str_idx + bkref_ent->subexp_to
|
|
- bkref_ent->subexp_from);
|
|
context = re_string_context_at (&mctx->input, dest_str_idx - 1,
|
|
mctx->eflags);
|
|
dest_state = mctx->state_log[dest_str_idx];
|
|
prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0
|
|
: mctx->state_log[cur_str_idx]->nodes.nelem);
|
|
/* Add `new_dest_node' to state_log. */
|
|
if (dest_state == NULL)
|
|
{
|
|
mctx->state_log[dest_str_idx]
|
|
= re_acquire_state_context (&err, dfa, new_dest_nodes,
|
|
context);
|
|
if (BE (mctx->state_log[dest_str_idx] == NULL
|
|
&& err != REG_NOERROR, 0))
|
|
goto free_return;
|
|
}
|
|
else
|
|
{
|
|
re_node_set dest_nodes;
|
|
err = re_node_set_init_union (&dest_nodes,
|
|
dest_state->entrance_nodes,
|
|
new_dest_nodes);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
{
|
|
re_node_set_free (&dest_nodes);
|
|
goto free_return;
|
|
}
|
|
mctx->state_log[dest_str_idx]
|
|
= re_acquire_state_context (&err, dfa, &dest_nodes, context);
|
|
re_node_set_free (&dest_nodes);
|
|
if (BE (mctx->state_log[dest_str_idx] == NULL
|
|
&& err != REG_NOERROR, 0))
|
|
goto free_return;
|
|
}
|
|
/* We need to check recursively if the backreference can epsilon
|
|
transit. */
|
|
if (subexp_len == 0
|
|
&& mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem)
|
|
{
|
|
err = check_subexp_matching_top (mctx, new_dest_nodes,
|
|
cur_str_idx);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
goto free_return;
|
|
err = transit_state_bkref (mctx, new_dest_nodes);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
goto free_return;
|
|
}
|
|
}
|
|
}
|
|
err = REG_NOERROR;
|
|
free_return:
|
|
return err;
|
|
}
|
|
|
|
/* Enumerate all the candidates which the backreference BKREF_NODE can match
|
|
at BKREF_STR_IDX, and register them by match_ctx_add_entry().
|
|
Note that we might collect inappropriate candidates here.
|
|
However, the cost of checking them strictly here is too high, then we
|
|
delay these checking for prune_impossible_nodes(). */
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
get_subexp (re_match_context_t *mctx, int bkref_node, int bkref_str_idx)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
int subexp_num, sub_top_idx;
|
|
const char *buf = (const char *) re_string_get_buffer (&mctx->input);
|
|
/* Return if we have already checked BKREF_NODE at BKREF_STR_IDX. */
|
|
int cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx);
|
|
if (cache_idx != -1)
|
|
{
|
|
const struct re_backref_cache_entry *entry
|
|
= mctx->bkref_ents + cache_idx;
|
|
do
|
|
if (entry->node == bkref_node)
|
|
return REG_NOERROR; /* We already checked it. */
|
|
while (entry++->more);
|
|
}
|
|
|
|
subexp_num = dfa->nodes[bkref_node].opr.idx;
|
|
|
|
/* For each sub expression */
|
|
for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx)
|
|
{
|
|
reg_errcode_t err;
|
|
re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx];
|
|
re_sub_match_last_t *sub_last;
|
|
int sub_last_idx, sl_str, bkref_str_off;
|
|
|
|
if (dfa->nodes[sub_top->node].opr.idx != subexp_num)
|
|
continue; /* It isn't related. */
|
|
|
|
sl_str = sub_top->str_idx;
|
|
bkref_str_off = bkref_str_idx;
|
|
/* At first, check the last node of sub expressions we already
|
|
evaluated. */
|
|
for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx)
|
|
{
|
|
int sl_str_diff;
|
|
sub_last = sub_top->lasts[sub_last_idx];
|
|
sl_str_diff = sub_last->str_idx - sl_str;
|
|
/* The matched string by the sub expression match with the substring
|
|
at the back reference? */
|
|
if (sl_str_diff > 0)
|
|
{
|
|
if (BE (bkref_str_off + sl_str_diff > mctx->input.valid_len, 0))
|
|
{
|
|
/* Not enough chars for a successful match. */
|
|
if (bkref_str_off + sl_str_diff > mctx->input.len)
|
|
break;
|
|
|
|
err = clean_state_log_if_needed (mctx,
|
|
bkref_str_off
|
|
+ sl_str_diff);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
buf = (const char *) re_string_get_buffer (&mctx->input);
|
|
}
|
|
if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0)
|
|
/* We don't need to search this sub expression any more. */
|
|
break;
|
|
}
|
|
bkref_str_off += sl_str_diff;
|
|
sl_str += sl_str_diff;
|
|
err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node,
|
|
bkref_str_idx);
|
|
|
|
/* Reload buf, since the preceding call might have reallocated
|
|
the buffer. */
|
|
buf = (const char *) re_string_get_buffer (&mctx->input);
|
|
|
|
if (err == REG_NOMATCH)
|
|
continue;
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
}
|
|
|
|
if (sub_last_idx < sub_top->nlasts)
|
|
continue;
|
|
if (sub_last_idx > 0)
|
|
++sl_str;
|
|
/* Then, search for the other last nodes of the sub expression. */
|
|
for (; sl_str <= bkref_str_idx; ++sl_str)
|
|
{
|
|
int cls_node, sl_str_off;
|
|
const re_node_set *nodes;
|
|
sl_str_off = sl_str - sub_top->str_idx;
|
|
/* The matched string by the sub expression match with the substring
|
|
at the back reference? */
|
|
if (sl_str_off > 0)
|
|
{
|
|
if (BE (bkref_str_off >= mctx->input.valid_len, 0))
|
|
{
|
|
/* If we are at the end of the input, we cannot match. */
|
|
if (bkref_str_off >= mctx->input.len)
|
|
break;
|
|
|
|
err = extend_buffers (mctx);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
|
|
buf = (const char *) re_string_get_buffer (&mctx->input);
|
|
}
|
|
if (buf [bkref_str_off++] != buf[sl_str - 1])
|
|
break; /* We don't need to search this sub expression
|
|
any more. */
|
|
}
|
|
if (mctx->state_log[sl_str] == NULL)
|
|
continue;
|
|
/* Does this state have a ')' of the sub expression? */
|
|
nodes = &mctx->state_log[sl_str]->nodes;
|
|
cls_node = find_subexp_node (dfa, nodes, subexp_num,
|
|
OP_CLOSE_SUBEXP);
|
|
if (cls_node == -1)
|
|
continue; /* No. */
|
|
if (sub_top->path == NULL)
|
|
{
|
|
sub_top->path = calloc (sizeof (state_array_t),
|
|
sl_str - sub_top->str_idx + 1);
|
|
if (sub_top->path == NULL)
|
|
return REG_ESPACE;
|
|
}
|
|
/* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node
|
|
in the current context? */
|
|
err = check_arrival (mctx, sub_top->path, sub_top->node,
|
|
sub_top->str_idx, cls_node, sl_str,
|
|
OP_CLOSE_SUBEXP);
|
|
if (err == REG_NOMATCH)
|
|
continue;
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str);
|
|
if (BE (sub_last == NULL, 0))
|
|
return REG_ESPACE;
|
|
err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node,
|
|
bkref_str_idx);
|
|
if (err == REG_NOMATCH)
|
|
continue;
|
|
}
|
|
}
|
|
return REG_NOERROR;
|
|
}
|
|
|
|
/* Helper functions for get_subexp(). */
|
|
|
|
/* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR.
|
|
If it can arrive, register the sub expression expressed with SUB_TOP
|
|
and SUB_LAST. */
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
get_subexp_sub (re_match_context_t *mctx, const re_sub_match_top_t *sub_top,
|
|
re_sub_match_last_t *sub_last, int bkref_node, int bkref_str)
|
|
{
|
|
reg_errcode_t err;
|
|
int to_idx;
|
|
/* Can the subexpression arrive the back reference? */
|
|
err = check_arrival (mctx, &sub_last->path, sub_last->node,
|
|
sub_last->str_idx, bkref_node, bkref_str,
|
|
OP_OPEN_SUBEXP);
|
|
if (err != REG_NOERROR)
|
|
return err;
|
|
err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx,
|
|
sub_last->str_idx);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx;
|
|
return clean_state_log_if_needed (mctx, to_idx);
|
|
}
|
|
|
|
/* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX.
|
|
Search '(' if FL_OPEN, or search ')' otherwise.
|
|
TODO: This function isn't efficient...
|
|
Because there might be more than one nodes whose types are
|
|
OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all
|
|
nodes.
|
|
E.g. RE: (a){2} */
|
|
|
|
static int
|
|
internal_function
|
|
find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes,
|
|
int subexp_idx, int type)
|
|
{
|
|
int cls_idx;
|
|
for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx)
|
|
{
|
|
int cls_node = nodes->elems[cls_idx];
|
|
const re_token_t *node = dfa->nodes + cls_node;
|
|
if (node->type == type
|
|
&& node->opr.idx == subexp_idx)
|
|
return cls_node;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* Check whether the node TOP_NODE at TOP_STR can arrive to the node
|
|
LAST_NODE at LAST_STR. We record the path onto PATH since it will be
|
|
heavily reused.
|
|
Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise. */
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
check_arrival (re_match_context_t *mctx, state_array_t *path, int top_node,
|
|
int top_str, int last_node, int last_str, int type)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
reg_errcode_t err = REG_NOERROR;
|
|
int subexp_num, backup_cur_idx, str_idx, null_cnt;
|
|
re_dfastate_t *cur_state = NULL;
|
|
re_node_set *cur_nodes, next_nodes;
|
|
re_dfastate_t **backup_state_log;
|
|
unsigned int context;
|
|
|
|
subexp_num = dfa->nodes[top_node].opr.idx;
|
|
/* Extend the buffer if we need. */
|
|
if (BE (path->alloc < last_str + mctx->max_mb_elem_len + 1, 0))
|
|
{
|
|
re_dfastate_t **new_array;
|
|
int old_alloc = path->alloc;
|
|
path->alloc += last_str + mctx->max_mb_elem_len + 1;
|
|
new_array = re_realloc (path->array, re_dfastate_t *, path->alloc);
|
|
if (BE (new_array == NULL, 0))
|
|
{
|
|
path->alloc = old_alloc;
|
|
return REG_ESPACE;
|
|
}
|
|
path->array = new_array;
|
|
memset (new_array + old_alloc, '\0',
|
|
sizeof (re_dfastate_t *) * (path->alloc - old_alloc));
|
|
}
|
|
|
|
str_idx = path->next_idx ? path->next_idx : top_str;
|
|
|
|
/* Temporary modify MCTX. */
|
|
backup_state_log = mctx->state_log;
|
|
backup_cur_idx = mctx->input.cur_idx;
|
|
mctx->state_log = path->array;
|
|
mctx->input.cur_idx = str_idx;
|
|
|
|
/* Setup initial node set. */
|
|
context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags);
|
|
if (str_idx == top_str)
|
|
{
|
|
err = re_node_set_init_1 (&next_nodes, top_node);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
{
|
|
re_node_set_free (&next_nodes);
|
|
return err;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cur_state = mctx->state_log[str_idx];
|
|
if (cur_state && cur_state->has_backref)
|
|
{
|
|
err = re_node_set_init_copy (&next_nodes, &cur_state->nodes);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
}
|
|
else
|
|
re_node_set_init_empty (&next_nodes);
|
|
}
|
|
if (str_idx == top_str || (cur_state && cur_state->has_backref))
|
|
{
|
|
if (next_nodes.nelem)
|
|
{
|
|
err = expand_bkref_cache (mctx, &next_nodes, str_idx,
|
|
subexp_num, type);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
{
|
|
re_node_set_free (&next_nodes);
|
|
return err;
|
|
}
|
|
}
|
|
cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context);
|
|
if (BE (cur_state == NULL && err != REG_NOERROR, 0))
|
|
{
|
|
re_node_set_free (&next_nodes);
|
|
return err;
|
|
}
|
|
mctx->state_log[str_idx] = cur_state;
|
|
}
|
|
|
|
for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;)
|
|
{
|
|
re_node_set_empty (&next_nodes);
|
|
if (mctx->state_log[str_idx + 1])
|
|
{
|
|
err = re_node_set_merge (&next_nodes,
|
|
&mctx->state_log[str_idx + 1]->nodes);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
{
|
|
re_node_set_free (&next_nodes);
|
|
return err;
|
|
}
|
|
}
|
|
if (cur_state)
|
|
{
|
|
err = check_arrival_add_next_nodes (mctx, str_idx,
|
|
&cur_state->non_eps_nodes,
|
|
&next_nodes);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
{
|
|
re_node_set_free (&next_nodes);
|
|
return err;
|
|
}
|
|
}
|
|
++str_idx;
|
|
if (next_nodes.nelem)
|
|
{
|
|
err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
{
|
|
re_node_set_free (&next_nodes);
|
|
return err;
|
|
}
|
|
err = expand_bkref_cache (mctx, &next_nodes, str_idx,
|
|
subexp_num, type);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
{
|
|
re_node_set_free (&next_nodes);
|
|
return err;
|
|
}
|
|
}
|
|
context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags);
|
|
cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context);
|
|
if (BE (cur_state == NULL && err != REG_NOERROR, 0))
|
|
{
|
|
re_node_set_free (&next_nodes);
|
|
return err;
|
|
}
|
|
mctx->state_log[str_idx] = cur_state;
|
|
null_cnt = cur_state == NULL ? null_cnt + 1 : 0;
|
|
}
|
|
re_node_set_free (&next_nodes);
|
|
cur_nodes = (mctx->state_log[last_str] == NULL ? NULL
|
|
: &mctx->state_log[last_str]->nodes);
|
|
path->next_idx = str_idx;
|
|
|
|
/* Fix MCTX. */
|
|
mctx->state_log = backup_state_log;
|
|
mctx->input.cur_idx = backup_cur_idx;
|
|
|
|
/* Then check the current node set has the node LAST_NODE. */
|
|
if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node))
|
|
return REG_NOERROR;
|
|
|
|
return REG_NOMATCH;
|
|
}
|
|
|
|
/* Helper functions for check_arrival. */
|
|
|
|
/* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them
|
|
to NEXT_NODES.
|
|
TODO: This function is similar to the functions transit_state*(),
|
|
however this function has many additional works.
|
|
Can't we unify them? */
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
check_arrival_add_next_nodes (re_match_context_t *mctx, int str_idx,
|
|
re_node_set *cur_nodes, re_node_set *next_nodes)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
int result;
|
|
int cur_idx;
|
|
#ifdef RE_ENABLE_I18N
|
|
reg_errcode_t err = REG_NOERROR;
|
|
#endif
|
|
re_node_set union_set;
|
|
re_node_set_init_empty (&union_set);
|
|
for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx)
|
|
{
|
|
int naccepted = 0;
|
|
int cur_node = cur_nodes->elems[cur_idx];
|
|
#ifdef DEBUG
|
|
re_token_type_t type = dfa->nodes[cur_node].type;
|
|
assert (!IS_EPSILON_NODE (type));
|
|
#endif
|
|
#ifdef RE_ENABLE_I18N
|
|
/* If the node may accept `multi byte'. */
|
|
if (dfa->nodes[cur_node].accept_mb)
|
|
{
|
|
naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input,
|
|
str_idx);
|
|
if (naccepted > 1)
|
|
{
|
|
re_dfastate_t *dest_state;
|
|
int next_node = dfa->nexts[cur_node];
|
|
int next_idx = str_idx + naccepted;
|
|
dest_state = mctx->state_log[next_idx];
|
|
re_node_set_empty (&union_set);
|
|
if (dest_state)
|
|
{
|
|
err = re_node_set_merge (&union_set, &dest_state->nodes);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
{
|
|
re_node_set_free (&union_set);
|
|
return err;
|
|
}
|
|
}
|
|
result = re_node_set_insert (&union_set, next_node);
|
|
if (BE (result < 0, 0))
|
|
{
|
|
re_node_set_free (&union_set);
|
|
return REG_ESPACE;
|
|
}
|
|
mctx->state_log[next_idx] = re_acquire_state (&err, dfa,
|
|
&union_set);
|
|
if (BE (mctx->state_log[next_idx] == NULL
|
|
&& err != REG_NOERROR, 0))
|
|
{
|
|
re_node_set_free (&union_set);
|
|
return err;
|
|
}
|
|
}
|
|
}
|
|
#endif /* RE_ENABLE_I18N */
|
|
if (naccepted
|
|
|| check_node_accept (mctx, dfa->nodes + cur_node, str_idx))
|
|
{
|
|
result = re_node_set_insert (next_nodes, dfa->nexts[cur_node]);
|
|
if (BE (result < 0, 0))
|
|
{
|
|
re_node_set_free (&union_set);
|
|
return REG_ESPACE;
|
|
}
|
|
}
|
|
}
|
|
re_node_set_free (&union_set);
|
|
return REG_NOERROR;
|
|
}
|
|
|
|
/* For all the nodes in CUR_NODES, add the epsilon closures of them to
|
|
CUR_NODES, however exclude the nodes which are:
|
|
- inside the sub expression whose number is EX_SUBEXP, if FL_OPEN.
|
|
- out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN.
|
|
*/
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
check_arrival_expand_ecl (const re_dfa_t *dfa, re_node_set *cur_nodes,
|
|
int ex_subexp, int type)
|
|
{
|
|
reg_errcode_t err;
|
|
int idx, outside_node;
|
|
re_node_set new_nodes;
|
|
#ifdef DEBUG
|
|
assert (cur_nodes->nelem);
|
|
#endif
|
|
err = re_node_set_alloc (&new_nodes, cur_nodes->nelem);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
/* Create a new node set NEW_NODES with the nodes which are epsilon
|
|
closures of the node in CUR_NODES. */
|
|
|
|
for (idx = 0; idx < cur_nodes->nelem; ++idx)
|
|
{
|
|
int cur_node = cur_nodes->elems[idx];
|
|
const re_node_set *eclosure = dfa->eclosures + cur_node;
|
|
outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type);
|
|
if (outside_node == -1)
|
|
{
|
|
/* There are no problematic nodes, just merge them. */
|
|
err = re_node_set_merge (&new_nodes, eclosure);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
{
|
|
re_node_set_free (&new_nodes);
|
|
return err;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* There are problematic nodes, re-calculate incrementally. */
|
|
err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node,
|
|
ex_subexp, type);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
{
|
|
re_node_set_free (&new_nodes);
|
|
return err;
|
|
}
|
|
}
|
|
}
|
|
re_node_set_free (cur_nodes);
|
|
*cur_nodes = new_nodes;
|
|
return REG_NOERROR;
|
|
}
|
|
|
|
/* Helper function for check_arrival_expand_ecl.
|
|
Check incrementally the epsilon closure of TARGET, and if it isn't
|
|
problematic append it to DST_NODES. */
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
check_arrival_expand_ecl_sub (const re_dfa_t *dfa, re_node_set *dst_nodes,
|
|
int target, int ex_subexp, int type)
|
|
{
|
|
int cur_node;
|
|
for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);)
|
|
{
|
|
int err;
|
|
|
|
if (dfa->nodes[cur_node].type == type
|
|
&& dfa->nodes[cur_node].opr.idx == ex_subexp)
|
|
{
|
|
if (type == OP_CLOSE_SUBEXP)
|
|
{
|
|
err = re_node_set_insert (dst_nodes, cur_node);
|
|
if (BE (err == -1, 0))
|
|
return REG_ESPACE;
|
|
}
|
|
break;
|
|
}
|
|
err = re_node_set_insert (dst_nodes, cur_node);
|
|
if (BE (err == -1, 0))
|
|
return REG_ESPACE;
|
|
if (dfa->edests[cur_node].nelem == 0)
|
|
break;
|
|
if (dfa->edests[cur_node].nelem == 2)
|
|
{
|
|
err = check_arrival_expand_ecl_sub (dfa, dst_nodes,
|
|
dfa->edests[cur_node].elems[1],
|
|
ex_subexp, type);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
}
|
|
cur_node = dfa->edests[cur_node].elems[0];
|
|
}
|
|
return REG_NOERROR;
|
|
}
|
|
|
|
|
|
/* For all the back references in the current state, calculate the
|
|
destination of the back references by the appropriate entry
|
|
in MCTX->BKREF_ENTS. */
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
expand_bkref_cache (re_match_context_t *mctx, re_node_set *cur_nodes,
|
|
int cur_str, int subexp_num, int type)
|
|
{
|
|
const re_dfa_t *const dfa = mctx->dfa;
|
|
reg_errcode_t err;
|
|
int cache_idx_start = search_cur_bkref_entry (mctx, cur_str);
|
|
struct re_backref_cache_entry *ent;
|
|
|
|
if (cache_idx_start == -1)
|
|
return REG_NOERROR;
|
|
|
|
restart:
|
|
ent = mctx->bkref_ents + cache_idx_start;
|
|
do
|
|
{
|
|
int to_idx, next_node;
|
|
|
|
/* Is this entry ENT is appropriate? */
|
|
if (!re_node_set_contains (cur_nodes, ent->node))
|
|
continue; /* No. */
|
|
|
|
to_idx = cur_str + ent->subexp_to - ent->subexp_from;
|
|
/* Calculate the destination of the back reference, and append it
|
|
to MCTX->STATE_LOG. */
|
|
if (to_idx == cur_str)
|
|
{
|
|
/* The backreference did epsilon transit, we must re-check all the
|
|
node in the current state. */
|
|
re_node_set new_dests;
|
|
reg_errcode_t err2, err3;
|
|
next_node = dfa->edests[ent->node].elems[0];
|
|
if (re_node_set_contains (cur_nodes, next_node))
|
|
continue;
|
|
err = re_node_set_init_1 (&new_dests, next_node);
|
|
err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type);
|
|
err3 = re_node_set_merge (cur_nodes, &new_dests);
|
|
re_node_set_free (&new_dests);
|
|
if (BE (err != REG_NOERROR || err2 != REG_NOERROR
|
|
|| err3 != REG_NOERROR, 0))
|
|
{
|
|
err = (err != REG_NOERROR ? err
|
|
: (err2 != REG_NOERROR ? err2 : err3));
|
|
return err;
|
|
}
|
|
/* TODO: It is still inefficient... */
|
|
goto restart;
|
|
}
|
|
else
|
|
{
|
|
re_node_set union_set;
|
|
next_node = dfa->nexts[ent->node];
|
|
if (mctx->state_log[to_idx])
|
|
{
|
|
int ret;
|
|
if (re_node_set_contains (&mctx->state_log[to_idx]->nodes,
|
|
next_node))
|
|
continue;
|
|
err = re_node_set_init_copy (&union_set,
|
|
&mctx->state_log[to_idx]->nodes);
|
|
ret = re_node_set_insert (&union_set, next_node);
|
|
if (BE (err != REG_NOERROR || ret < 0, 0))
|
|
{
|
|
re_node_set_free (&union_set);
|
|
err = err != REG_NOERROR ? err : REG_ESPACE;
|
|
return err;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
err = re_node_set_init_1 (&union_set, next_node);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
return err;
|
|
}
|
|
mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set);
|
|
re_node_set_free (&union_set);
|
|
if (BE (mctx->state_log[to_idx] == NULL
|
|
&& err != REG_NOERROR, 0))
|
|
return err;
|
|
}
|
|
}
|
|
while (ent++->more);
|
|
return REG_NOERROR;
|
|
}
|
|
|
|
/* Build transition table for the state.
|
|
Return 1 if succeeded, otherwise return NULL. */
|
|
|
|
static int
|
|
internal_function
|
|
build_trtable (const re_dfa_t *dfa, re_dfastate_t *state)
|
|
{
|
|
reg_errcode_t err;
|
|
int i, j, ch, need_word_trtable = 0;
|
|
bitset_word_t elem, mask;
|
|
bool dests_node_malloced = false;
|
|
bool dest_states_malloced = false;
|
|
int ndests; /* Number of the destination states from `state'. */
|
|
re_dfastate_t **trtable;
|
|
re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl;
|
|
re_node_set follows, *dests_node;
|
|
bitset_t *dests_ch;
|
|
bitset_t acceptable;
|
|
|
|
struct dests_alloc
|
|
{
|
|
re_node_set dests_node[SBC_MAX];
|
|
bitset_t dests_ch[SBC_MAX];
|
|
} *dests_alloc;
|
|
|
|
/* We build DFA states which corresponds to the destination nodes
|
|
from `state'. `dests_node[i]' represents the nodes which i-th
|
|
destination state contains, and `dests_ch[i]' represents the
|
|
characters which i-th destination state accepts. */
|
|
#ifdef HAVE_ALLOCA
|
|
if (__libc_use_alloca (sizeof (struct dests_alloc)))
|
|
dests_alloc = (struct dests_alloc *) alloca (sizeof (struct dests_alloc));
|
|
else
|
|
#endif
|
|
{
|
|
dests_alloc = re_malloc (struct dests_alloc, 1);
|
|
if (BE (dests_alloc == NULL, 0))
|
|
return 0;
|
|
dests_node_malloced = true;
|
|
}
|
|
dests_node = dests_alloc->dests_node;
|
|
dests_ch = dests_alloc->dests_ch;
|
|
|
|
/* Initialize transiton table. */
|
|
state->word_trtable = state->trtable = NULL;
|
|
|
|
/* At first, group all nodes belonging to `state' into several
|
|
destinations. */
|
|
ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch);
|
|
if (BE (ndests <= 0, 0))
|
|
{
|
|
if (dests_node_malloced)
|
|
free (dests_alloc);
|
|
/* Return 0 in case of an error, 1 otherwise. */
|
|
if (ndests == 0)
|
|
{
|
|
state->trtable = (re_dfastate_t **)
|
|
calloc (sizeof (re_dfastate_t *), SBC_MAX);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
err = re_node_set_alloc (&follows, ndests + 1);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
goto out_free;
|
|
|
|
/* Avoid arithmetic overflow in size calculation. */
|
|
if (BE ((((SIZE_MAX - (sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX)
|
|
/ (3 * sizeof (re_dfastate_t *)))
|
|
< ndests),
|
|
0))
|
|
goto out_free;
|
|
|
|
#ifdef HAVE_ALLOCA
|
|
if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX
|
|
+ ndests * 3 * sizeof (re_dfastate_t *)))
|
|
dest_states = (re_dfastate_t **)
|
|
alloca (ndests * 3 * sizeof (re_dfastate_t *));
|
|
else
|
|
#endif
|
|
{
|
|
dest_states = (re_dfastate_t **)
|
|
malloc (ndests * 3 * sizeof (re_dfastate_t *));
|
|
if (BE (dest_states == NULL, 0))
|
|
{
|
|
out_free:
|
|
if (dest_states_malloced)
|
|
free (dest_states);
|
|
re_node_set_free (&follows);
|
|
for (i = 0; i < ndests; ++i)
|
|
re_node_set_free (dests_node + i);
|
|
if (dests_node_malloced)
|
|
free (dests_alloc);
|
|
return 0;
|
|
}
|
|
dest_states_malloced = true;
|
|
}
|
|
dest_states_word = dest_states + ndests;
|
|
dest_states_nl = dest_states_word + ndests;
|
|
bitset_empty (acceptable);
|
|
|
|
/* Then build the states for all destinations. */
|
|
for (i = 0; i < ndests; ++i)
|
|
{
|
|
int next_node;
|
|
re_node_set_empty (&follows);
|
|
/* Merge the follows of this destination states. */
|
|
for (j = 0; j < dests_node[i].nelem; ++j)
|
|
{
|
|
next_node = dfa->nexts[dests_node[i].elems[j]];
|
|
if (next_node != -1)
|
|
{
|
|
err = re_node_set_merge (&follows, dfa->eclosures + next_node);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
goto out_free;
|
|
}
|
|
}
|
|
dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0);
|
|
if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0))
|
|
goto out_free;
|
|
/* If the new state has context constraint,
|
|
build appropriate states for these contexts. */
|
|
if (dest_states[i]->has_constraint)
|
|
{
|
|
dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows,
|
|
CONTEXT_WORD);
|
|
if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0))
|
|
goto out_free;
|
|
|
|
if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1)
|
|
need_word_trtable = 1;
|
|
|
|
dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows,
|
|
CONTEXT_NEWLINE);
|
|
if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0))
|
|
goto out_free;
|
|
}
|
|
else
|
|
{
|
|
dest_states_word[i] = dest_states[i];
|
|
dest_states_nl[i] = dest_states[i];
|
|
}
|
|
bitset_merge (acceptable, dests_ch[i]);
|
|
}
|
|
|
|
if (!BE (need_word_trtable, 0))
|
|
{
|
|
/* We don't care about whether the following character is a word
|
|
character, or we are in a single-byte character set so we can
|
|
discern by looking at the character code: allocate a
|
|
256-entry transition table. */
|
|
trtable = state->trtable =
|
|
(re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX);
|
|
if (BE (trtable == NULL, 0))
|
|
goto out_free;
|
|
|
|
/* For all characters ch...: */
|
|
for (i = 0; i < BITSET_WORDS; ++i)
|
|
for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1;
|
|
elem;
|
|
mask <<= 1, elem >>= 1, ++ch)
|
|
if (BE (elem & 1, 0))
|
|
{
|
|
/* There must be exactly one destination which accepts
|
|
character ch. See group_nodes_into_DFAstates. */
|
|
for (j = 0; (dests_ch[j][i] & mask) == 0; ++j)
|
|
;
|
|
|
|
/* j-th destination accepts the word character ch. */
|
|
if (dfa->word_char[i] & mask)
|
|
trtable[ch] = dest_states_word[j];
|
|
else
|
|
trtable[ch] = dest_states[j];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We care about whether the following character is a word
|
|
character, and we are in a multi-byte character set: discern
|
|
by looking at the character code: build two 256-entry
|
|
transition tables, one starting at trtable[0] and one
|
|
starting at trtable[SBC_MAX]. */
|
|
trtable = state->word_trtable =
|
|
(re_dfastate_t **) calloc (sizeof (re_dfastate_t *), 2 * SBC_MAX);
|
|
if (BE (trtable == NULL, 0))
|
|
goto out_free;
|
|
|
|
/* For all characters ch...: */
|
|
for (i = 0; i < BITSET_WORDS; ++i)
|
|
for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1;
|
|
elem;
|
|
mask <<= 1, elem >>= 1, ++ch)
|
|
if (BE (elem & 1, 0))
|
|
{
|
|
/* There must be exactly one destination which accepts
|
|
character ch. See group_nodes_into_DFAstates. */
|
|
for (j = 0; (dests_ch[j][i] & mask) == 0; ++j)
|
|
;
|
|
|
|
/* j-th destination accepts the word character ch. */
|
|
trtable[ch] = dest_states[j];
|
|
trtable[ch + SBC_MAX] = dest_states_word[j];
|
|
}
|
|
}
|
|
|
|
/* new line */
|
|
if (bitset_contain (acceptable, NEWLINE_CHAR))
|
|
{
|
|
/* The current state accepts newline character. */
|
|
for (j = 0; j < ndests; ++j)
|
|
if (bitset_contain (dests_ch[j], NEWLINE_CHAR))
|
|
{
|
|
/* k-th destination accepts newline character. */
|
|
trtable[NEWLINE_CHAR] = dest_states_nl[j];
|
|
if (need_word_trtable)
|
|
trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j];
|
|
/* There must be only one destination which accepts
|
|
newline. See group_nodes_into_DFAstates. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (dest_states_malloced)
|
|
free (dest_states);
|
|
|
|
re_node_set_free (&follows);
|
|
for (i = 0; i < ndests; ++i)
|
|
re_node_set_free (dests_node + i);
|
|
|
|
if (dests_node_malloced)
|
|
free (dests_alloc);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Group all nodes belonging to STATE into several destinations.
|
|
Then for all destinations, set the nodes belonging to the destination
|
|
to DESTS_NODE[i] and set the characters accepted by the destination
|
|
to DEST_CH[i]. This function return the number of destinations. */
|
|
|
|
static int
|
|
internal_function
|
|
group_nodes_into_DFAstates (const re_dfa_t *dfa, const re_dfastate_t *state,
|
|
re_node_set *dests_node, bitset_t *dests_ch)
|
|
{
|
|
reg_errcode_t err;
|
|
int result;
|
|
int i, j, k;
|
|
int ndests; /* Number of the destinations from `state'. */
|
|
bitset_t accepts; /* Characters a node can accept. */
|
|
const re_node_set *cur_nodes = &state->nodes;
|
|
bitset_empty (accepts);
|
|
ndests = 0;
|
|
|
|
/* For all the nodes belonging to `state', */
|
|
for (i = 0; i < cur_nodes->nelem; ++i)
|
|
{
|
|
re_token_t *node = &dfa->nodes[cur_nodes->elems[i]];
|
|
re_token_type_t type = node->type;
|
|
unsigned int constraint = node->constraint;
|
|
|
|
/* Enumerate all single byte character this node can accept. */
|
|
if (type == CHARACTER)
|
|
bitset_set (accepts, node->opr.c);
|
|
else if (type == SIMPLE_BRACKET)
|
|
{
|
|
bitset_merge (accepts, node->opr.sbcset);
|
|
}
|
|
else if (type == OP_PERIOD)
|
|
{
|
|
#ifdef RE_ENABLE_I18N
|
|
if (dfa->mb_cur_max > 1)
|
|
bitset_merge (accepts, dfa->sb_char);
|
|
else
|
|
#endif
|
|
bitset_set_all (accepts);
|
|
if (!(dfa->syntax & RE_DOT_NEWLINE))
|
|
bitset_clear (accepts, '\n');
|
|
if (dfa->syntax & RE_DOT_NOT_NULL)
|
|
bitset_clear (accepts, '\0');
|
|
}
|
|
#ifdef RE_ENABLE_I18N
|
|
else if (type == OP_UTF8_PERIOD)
|
|
{
|
|
memset (accepts, '\xff', sizeof (bitset_t) / 2);
|
|
if (!(dfa->syntax & RE_DOT_NEWLINE))
|
|
bitset_clear (accepts, '\n');
|
|
if (dfa->syntax & RE_DOT_NOT_NULL)
|
|
bitset_clear (accepts, '\0');
|
|
}
|
|
#endif
|
|
else
|
|
continue;
|
|
|
|
/* Check the `accepts' and sift the characters which are not
|
|
match it the context. */
|
|
if (constraint)
|
|
{
|
|
if (constraint & NEXT_NEWLINE_CONSTRAINT)
|
|
{
|
|
bool accepts_newline = bitset_contain (accepts, NEWLINE_CHAR);
|
|
bitset_empty (accepts);
|
|
if (accepts_newline)
|
|
bitset_set (accepts, NEWLINE_CHAR);
|
|
else
|
|
continue;
|
|
}
|
|
if (constraint & NEXT_ENDBUF_CONSTRAINT)
|
|
{
|
|
bitset_empty (accepts);
|
|
continue;
|
|
}
|
|
|
|
if (constraint & NEXT_WORD_CONSTRAINT)
|
|
{
|
|
bitset_word_t any_set = 0;
|
|
if (type == CHARACTER && !node->word_char)
|
|
{
|
|
bitset_empty (accepts);
|
|
continue;
|
|
}
|
|
#ifdef RE_ENABLE_I18N
|
|
if (dfa->mb_cur_max > 1)
|
|
for (j = 0; j < BITSET_WORDS; ++j)
|
|
any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j]));
|
|
else
|
|
#endif
|
|
for (j = 0; j < BITSET_WORDS; ++j)
|
|
any_set |= (accepts[j] &= dfa->word_char[j]);
|
|
if (!any_set)
|
|
continue;
|
|
}
|
|
if (constraint & NEXT_NOTWORD_CONSTRAINT)
|
|
{
|
|
bitset_word_t any_set = 0;
|
|
if (type == CHARACTER && node->word_char)
|
|
{
|
|
bitset_empty (accepts);
|
|
continue;
|
|
}
|
|
#ifdef RE_ENABLE_I18N
|
|
if (dfa->mb_cur_max > 1)
|
|
for (j = 0; j < BITSET_WORDS; ++j)
|
|
any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j]));
|
|
else
|
|
#endif
|
|
for (j = 0; j < BITSET_WORDS; ++j)
|
|
any_set |= (accepts[j] &= ~dfa->word_char[j]);
|
|
if (!any_set)
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Then divide `accepts' into DFA states, or create a new
|
|
state. Above, we make sure that accepts is not empty. */
|
|
for (j = 0; j < ndests; ++j)
|
|
{
|
|
bitset_t intersec; /* Intersection sets, see below. */
|
|
bitset_t remains;
|
|
/* Flags, see below. */
|
|
bitset_word_t has_intersec, not_subset, not_consumed;
|
|
|
|
/* Optimization, skip if this state doesn't accept the character. */
|
|
if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c))
|
|
continue;
|
|
|
|
/* Enumerate the intersection set of this state and `accepts'. */
|
|
has_intersec = 0;
|
|
for (k = 0; k < BITSET_WORDS; ++k)
|
|
has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k];
|
|
/* And skip if the intersection set is empty. */
|
|
if (!has_intersec)
|
|
continue;
|
|
|
|
/* Then check if this state is a subset of `accepts'. */
|
|
not_subset = not_consumed = 0;
|
|
for (k = 0; k < BITSET_WORDS; ++k)
|
|
{
|
|
not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k];
|
|
not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k];
|
|
}
|
|
|
|
/* If this state isn't a subset of `accepts', create a
|
|
new group state, which has the `remains'. */
|
|
if (not_subset)
|
|
{
|
|
bitset_copy (dests_ch[ndests], remains);
|
|
bitset_copy (dests_ch[j], intersec);
|
|
err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
goto error_return;
|
|
++ndests;
|
|
}
|
|
|
|
/* Put the position in the current group. */
|
|
result = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]);
|
|
if (BE (result < 0, 0))
|
|
goto error_return;
|
|
|
|
/* If all characters are consumed, go to next node. */
|
|
if (!not_consumed)
|
|
break;
|
|
}
|
|
/* Some characters remain, create a new group. */
|
|
if (j == ndests)
|
|
{
|
|
bitset_copy (dests_ch[ndests], accepts);
|
|
err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]);
|
|
if (BE (err != REG_NOERROR, 0))
|
|
goto error_return;
|
|
++ndests;
|
|
bitset_empty (accepts);
|
|
}
|
|
}
|
|
return ndests;
|
|
error_return:
|
|
for (j = 0; j < ndests; ++j)
|
|
re_node_set_free (dests_node + j);
|
|
return -1;
|
|
}
|
|
|
|
#ifdef RE_ENABLE_I18N
|
|
/* Check how many bytes the node `dfa->nodes[node_idx]' accepts.
|
|
Return the number of the bytes the node accepts.
|
|
STR_IDX is the current index of the input string.
|
|
|
|
This function handles the nodes which can accept one character, or
|
|
one collating element like '.', '[a-z]', opposite to the other nodes
|
|
can only accept one byte. */
|
|
|
|
static int
|
|
internal_function
|
|
check_node_accept_bytes (const re_dfa_t *dfa, int node_idx,
|
|
const re_string_t *input, int str_idx)
|
|
{
|
|
const re_token_t *node = dfa->nodes + node_idx;
|
|
int char_len, elem_len;
|
|
int i;
|
|
wint_t wc;
|
|
|
|
if (BE (node->type == OP_UTF8_PERIOD, 0))
|
|
{
|
|
unsigned char c = re_string_byte_at (input, str_idx), d;
|
|
if (BE (c < 0xc2, 1))
|
|
return 0;
|
|
|
|
if (str_idx + 2 > input->len)
|
|
return 0;
|
|
|
|
d = re_string_byte_at (input, str_idx + 1);
|
|
if (c < 0xe0)
|
|
return (d < 0x80 || d > 0xbf) ? 0 : 2;
|
|
else if (c < 0xf0)
|
|
{
|
|
char_len = 3;
|
|
if (c == 0xe0 && d < 0xa0)
|
|
return 0;
|
|
}
|
|
else if (c < 0xf8)
|
|
{
|
|
char_len = 4;
|
|
if (c == 0xf0 && d < 0x90)
|
|
return 0;
|
|
}
|
|
else if (c < 0xfc)
|
|
{
|
|
char_len = 5;
|
|
if (c == 0xf8 && d < 0x88)
|
|
return 0;
|
|
}
|
|
else if (c < 0xfe)
|
|
{
|
|
char_len = 6;
|
|
if (c == 0xfc && d < 0x84)
|
|
return 0;
|
|
}
|
|
else
|
|
return 0;
|
|
|
|
if (str_idx + char_len > input->len)
|
|
return 0;
|
|
|
|
for (i = 1; i < char_len; ++i)
|
|
{
|
|
d = re_string_byte_at (input, str_idx + i);
|
|
if (d < 0x80 || d > 0xbf)
|
|
return 0;
|
|
}
|
|
return char_len;
|
|
}
|
|
|
|
char_len = re_string_char_size_at (input, str_idx);
|
|
if (node->type == OP_PERIOD)
|
|
{
|
|
if (char_len <= 1)
|
|
return 0;
|
|
/* FIXME: I don't think this if is needed, as both '\n'
|
|
and '\0' are char_len == 1. */
|
|
/* '.' accepts any one character except the following two cases. */
|
|
if ((!(dfa->syntax & RE_DOT_NEWLINE) &&
|
|
re_string_byte_at (input, str_idx) == '\n') ||
|
|
((dfa->syntax & RE_DOT_NOT_NULL) &&
|
|
re_string_byte_at (input, str_idx) == '\0'))
|
|
return 0;
|
|
return char_len;
|
|
}
|
|
|
|
elem_len = re_string_elem_size_at (input, str_idx);
|
|
wc = __btowc(*(input->mbs+str_idx));
|
|
if (((elem_len <= 1 && char_len <= 1) || char_len == 0) && (wc != WEOF && wc < SBC_MAX))
|
|
return 0;
|
|
|
|
if (node->type == COMPLEX_BRACKET)
|
|
{
|
|
const re_charset_t *cset = node->opr.mbcset;
|
|
# ifdef _LIBC
|
|
const unsigned char *pin
|
|
= ((const unsigned char *) re_string_get_buffer (input) + str_idx);
|
|
int j;
|
|
uint32_t nrules;
|
|
# endif /* _LIBC */
|
|
int match_len = 0;
|
|
wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars)
|
|
? re_string_wchar_at (input, str_idx) : 0);
|
|
|
|
/* match with multibyte character? */
|
|
for (i = 0; i < cset->nmbchars; ++i)
|
|
if (wc == cset->mbchars[i])
|
|
{
|
|
match_len = char_len;
|
|
goto check_node_accept_bytes_match;
|
|
}
|
|
/* match with character_class? */
|
|
for (i = 0; i < cset->nchar_classes; ++i)
|
|
{
|
|
wctype_t wt = cset->char_classes[i];
|
|
if (__iswctype (wc, wt))
|
|
{
|
|
match_len = char_len;
|
|
goto check_node_accept_bytes_match;
|
|
}
|
|
}
|
|
|
|
# ifdef _LIBC
|
|
nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
|
|
if (nrules != 0)
|
|
{
|
|
unsigned int in_collseq = 0;
|
|
const int32_t *table, *indirect;
|
|
const unsigned char *weights, *extra;
|
|
const char *collseqwc;
|
|
/* This #include defines a local function! */
|
|
# include <locale/weight.h>
|
|
|
|
/* match with collating_symbol? */
|
|
if (cset->ncoll_syms)
|
|
extra = (const unsigned char *)
|
|
_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
|
|
for (i = 0; i < cset->ncoll_syms; ++i)
|
|
{
|
|
const unsigned char *coll_sym = extra + cset->coll_syms[i];
|
|
/* Compare the length of input collating element and
|
|
the length of current collating element. */
|
|
if (*coll_sym != elem_len)
|
|
continue;
|
|
/* Compare each bytes. */
|
|
for (j = 0; j < *coll_sym; j++)
|
|
if (pin[j] != coll_sym[1 + j])
|
|
break;
|
|
if (j == *coll_sym)
|
|
{
|
|
/* Match if every bytes is equal. */
|
|
match_len = j;
|
|
goto check_node_accept_bytes_match;
|
|
}
|
|
}
|
|
|
|
if (cset->nranges)
|
|
{
|
|
if (elem_len <= char_len)
|
|
{
|
|
collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC);
|
|
in_collseq = __collseq_table_lookup (collseqwc, wc);
|
|
}
|
|
else
|
|
in_collseq = find_collation_sequence_value (pin, elem_len);
|
|
}
|
|
/* match with range expression? */
|
|
for (i = 0; i < cset->nranges; ++i)
|
|
if (cset->range_starts[i] <= in_collseq
|
|
&& in_collseq <= cset->range_ends[i])
|
|
{
|
|
match_len = elem_len;
|
|
goto check_node_accept_bytes_match;
|
|
}
|
|
|
|
/* match with equivalence_class? */
|
|
if (cset->nequiv_classes)
|
|
{
|
|
const unsigned char *cp = pin;
|
|
table = (const int32_t *)
|
|
_NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
|
|
weights = (const unsigned char *)
|
|
_NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
|
|
extra = (const unsigned char *)
|
|
_NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
|
|
indirect = (const int32_t *)
|
|
_NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
|
|
int32_t idx = findidx (&cp);
|
|
if (idx > 0)
|
|
for (i = 0; i < cset->nequiv_classes; ++i)
|
|
{
|
|
int32_t equiv_class_idx = cset->equiv_classes[i];
|
|
size_t weight_len = weights[idx & 0xffffff];
|
|
if (weight_len == weights[equiv_class_idx & 0xffffff]
|
|
&& (idx >> 24) == (equiv_class_idx >> 24))
|
|
{
|
|
int cnt = 0;
|
|
|
|
idx &= 0xffffff;
|
|
equiv_class_idx &= 0xffffff;
|
|
|
|
while (cnt <= weight_len
|
|
&& (weights[equiv_class_idx + 1 + cnt]
|
|
== weights[idx + 1 + cnt]))
|
|
++cnt;
|
|
if (cnt > weight_len)
|
|
{
|
|
match_len = elem_len;
|
|
goto check_node_accept_bytes_match;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
# endif /* _LIBC */
|
|
{
|
|
/* match with range expression? */
|
|
#if __GNUC__ >= 2
|
|
wchar_t cmp_buf[] = {L'\0', L'\0', wc, L'\0', L'\0', L'\0'};
|
|
#else
|
|
wchar_t cmp_buf[] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'};
|
|
cmp_buf[2] = wc;
|
|
#endif
|
|
for (i = 0; i < cset->nranges; ++i)
|
|
{
|
|
cmp_buf[0] = cset->range_starts[i];
|
|
cmp_buf[4] = cset->range_ends[i];
|
|
if (wcscoll (cmp_buf, cmp_buf + 2) <= 0
|
|
&& wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0)
|
|
{
|
|
match_len = char_len;
|
|
goto check_node_accept_bytes_match;
|
|
}
|
|
}
|
|
}
|
|
check_node_accept_bytes_match:
|
|
if (!cset->non_match)
|
|
return match_len;
|
|
else
|
|
{
|
|
if (match_len > 0)
|
|
return 0;
|
|
else
|
|
return (elem_len > char_len) ? elem_len : char_len;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
# ifdef _LIBC
|
|
static unsigned int
|
|
internal_function
|
|
find_collation_sequence_value (const unsigned char *mbs, size_t mbs_len)
|
|
{
|
|
uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
|
|
if (nrules == 0)
|
|
{
|
|
if (mbs_len == 1)
|
|
{
|
|
/* No valid character. Match it as a single byte character. */
|
|
const unsigned char *collseq = (const unsigned char *)
|
|
_NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB);
|
|
return collseq[mbs[0]];
|
|
}
|
|
return UINT_MAX;
|
|
}
|
|
else
|
|
{
|
|
int32_t idx;
|
|
const unsigned char *extra = (const unsigned char *)
|
|
_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
|
|
int32_t extrasize = (const unsigned char *)
|
|
_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra;
|
|
|
|
for (idx = 0; idx < extrasize;)
|
|
{
|
|
int mbs_cnt, found = 0;
|
|
int32_t elem_mbs_len;
|
|
/* Skip the name of collating element name. */
|
|
idx = idx + extra[idx] + 1;
|
|
elem_mbs_len = extra[idx++];
|
|
if (mbs_len == elem_mbs_len)
|
|
{
|
|
for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt)
|
|
if (extra[idx + mbs_cnt] != mbs[mbs_cnt])
|
|
break;
|
|
if (mbs_cnt == elem_mbs_len)
|
|
/* Found the entry. */
|
|
found = 1;
|
|
}
|
|
/* Skip the byte sequence of the collating element. */
|
|
idx += elem_mbs_len;
|
|
/* Adjust for the alignment. */
|
|
idx = (idx + 3) & ~3;
|
|
/* Skip the collation sequence value. */
|
|
idx += sizeof (uint32_t);
|
|
/* Skip the wide char sequence of the collating element. */
|
|
idx = idx + sizeof (uint32_t) * (extra[idx] + 1);
|
|
/* If we found the entry, return the sequence value. */
|
|
if (found)
|
|
return *(uint32_t *) (extra + idx);
|
|
/* Skip the collation sequence value. */
|
|
idx += sizeof (uint32_t);
|
|
}
|
|
return UINT_MAX;
|
|
}
|
|
}
|
|
# endif /* _LIBC */
|
|
#endif /* RE_ENABLE_I18N */
|
|
|
|
/* Check whether the node accepts the byte which is IDX-th
|
|
byte of the INPUT. */
|
|
|
|
static int
|
|
internal_function
|
|
check_node_accept (const re_match_context_t *mctx, const re_token_t *node,
|
|
int idx)
|
|
{
|
|
unsigned char ch;
|
|
ch = re_string_byte_at (&mctx->input, idx);
|
|
switch (node->type)
|
|
{
|
|
case CHARACTER:
|
|
if (node->opr.c != ch)
|
|
return 0;
|
|
break;
|
|
|
|
case SIMPLE_BRACKET:
|
|
if (!bitset_contain (node->opr.sbcset, ch))
|
|
return 0;
|
|
break;
|
|
|
|
#ifdef RE_ENABLE_I18N
|
|
case OP_UTF8_PERIOD:
|
|
if (ch >= 0x80)
|
|
return 0;
|
|
/* FALLTHROUGH */
|
|
#endif
|
|
case OP_PERIOD:
|
|
if ((ch == '\n' && !(mctx->dfa->syntax & RE_DOT_NEWLINE))
|
|
|| (ch == '\0' && (mctx->dfa->syntax & RE_DOT_NOT_NULL)))
|
|
return 0;
|
|
break;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
if (node->constraint)
|
|
{
|
|
/* The node has constraints. Check whether the current context
|
|
satisfies the constraints. */
|
|
unsigned int context = re_string_context_at (&mctx->input, idx,
|
|
mctx->eflags);
|
|
if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context))
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Extend the buffers, if the buffers have run out. */
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
extend_buffers (re_match_context_t *mctx)
|
|
{
|
|
reg_errcode_t ret;
|
|
re_string_t *pstr = &mctx->input;
|
|
|
|
/* Avoid overflow. */
|
|
if (BE (INT_MAX / 2 / sizeof (re_dfastate_t *) <= pstr->bufs_len, 0))
|
|
return REG_ESPACE;
|
|
|
|
/* Double the lengthes of the buffers. */
|
|
ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2);
|
|
if (BE (ret != REG_NOERROR, 0))
|
|
return ret;
|
|
|
|
if (mctx->state_log != NULL)
|
|
{
|
|
/* And double the length of state_log. */
|
|
/* XXX We have no indication of the size of this buffer. If this
|
|
allocation fail we have no indication that the state_log array
|
|
does not have the right size. */
|
|
re_dfastate_t **new_array = re_realloc (mctx->state_log, re_dfastate_t *,
|
|
pstr->bufs_len + 1);
|
|
if (BE (new_array == NULL, 0))
|
|
return REG_ESPACE;
|
|
mctx->state_log = new_array;
|
|
}
|
|
|
|
/* Then reconstruct the buffers. */
|
|
if (pstr->icase)
|
|
{
|
|
#ifdef RE_ENABLE_I18N
|
|
if (pstr->mb_cur_max > 1)
|
|
{
|
|
ret = build_wcs_upper_buffer (pstr);
|
|
if (BE (ret != REG_NOERROR, 0))
|
|
return ret;
|
|
}
|
|
else
|
|
#endif /* RE_ENABLE_I18N */
|
|
build_upper_buffer (pstr);
|
|
}
|
|
else
|
|
{
|
|
#ifdef RE_ENABLE_I18N
|
|
if (pstr->mb_cur_max > 1)
|
|
build_wcs_buffer (pstr);
|
|
else
|
|
#endif /* RE_ENABLE_I18N */
|
|
{
|
|
if (pstr->trans != NULL)
|
|
re_string_translate_buffer (pstr);
|
|
}
|
|
}
|
|
return REG_NOERROR;
|
|
}
|
|
|
|
|
|
/* Functions for matching context. */
|
|
|
|
/* Initialize MCTX. */
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
match_ctx_init (re_match_context_t *mctx, int eflags, int n)
|
|
{
|
|
mctx->eflags = eflags;
|
|
mctx->match_last = -1;
|
|
if (n > 0)
|
|
{
|
|
mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n);
|
|
mctx->sub_tops = re_malloc (re_sub_match_top_t *, n);
|
|
if (BE (mctx->bkref_ents == NULL || mctx->sub_tops == NULL, 0))
|
|
return REG_ESPACE;
|
|
}
|
|
/* Already zero-ed by the caller.
|
|
else
|
|
mctx->bkref_ents = NULL;
|
|
mctx->nbkref_ents = 0;
|
|
mctx->nsub_tops = 0; */
|
|
mctx->abkref_ents = n;
|
|
mctx->max_mb_elem_len = 1;
|
|
mctx->asub_tops = n;
|
|
return REG_NOERROR;
|
|
}
|
|
|
|
/* Clean the entries which depend on the current input in MCTX.
|
|
This function must be invoked when the matcher changes the start index
|
|
of the input, or changes the input string. */
|
|
|
|
static void
|
|
internal_function
|
|
match_ctx_clean (re_match_context_t *mctx)
|
|
{
|
|
int st_idx;
|
|
for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx)
|
|
{
|
|
int sl_idx;
|
|
re_sub_match_top_t *top = mctx->sub_tops[st_idx];
|
|
for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx)
|
|
{
|
|
re_sub_match_last_t *last = top->lasts[sl_idx];
|
|
re_free (last->path.array);
|
|
re_free (last);
|
|
}
|
|
re_free (top->lasts);
|
|
if (top->path)
|
|
{
|
|
re_free (top->path->array);
|
|
re_free (top->path);
|
|
}
|
|
free (top);
|
|
}
|
|
|
|
mctx->nsub_tops = 0;
|
|
mctx->nbkref_ents = 0;
|
|
}
|
|
|
|
/* Free all the memory associated with MCTX. */
|
|
|
|
static void
|
|
internal_function
|
|
match_ctx_free (re_match_context_t *mctx)
|
|
{
|
|
/* First, free all the memory associated with MCTX->SUB_TOPS. */
|
|
match_ctx_clean (mctx);
|
|
re_free (mctx->sub_tops);
|
|
re_free (mctx->bkref_ents);
|
|
}
|
|
|
|
/* Add a new backreference entry to MCTX.
|
|
Note that we assume that caller never call this function with duplicate
|
|
entry, and call with STR_IDX which isn't smaller than any existing entry.
|
|
*/
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
match_ctx_add_entry (re_match_context_t *mctx, int node, int str_idx, int from,
|
|
int to)
|
|
{
|
|
if (mctx->nbkref_ents >= mctx->abkref_ents)
|
|
{
|
|
struct re_backref_cache_entry* new_entry;
|
|
new_entry = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry,
|
|
mctx->abkref_ents * 2);
|
|
if (BE (new_entry == NULL, 0))
|
|
{
|
|
re_free (mctx->bkref_ents);
|
|
return REG_ESPACE;
|
|
}
|
|
mctx->bkref_ents = new_entry;
|
|
memset (mctx->bkref_ents + mctx->nbkref_ents, '\0',
|
|
sizeof (struct re_backref_cache_entry) * mctx->abkref_ents);
|
|
mctx->abkref_ents *= 2;
|
|
}
|
|
if (mctx->nbkref_ents > 0
|
|
&& mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx)
|
|
mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1;
|
|
|
|
mctx->bkref_ents[mctx->nbkref_ents].node = node;
|
|
mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx;
|
|
mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from;
|
|
mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to;
|
|
|
|
/* This is a cache that saves negative results of check_dst_limits_calc_pos.
|
|
If bit N is clear, means that this entry won't epsilon-transition to
|
|
an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression. If
|
|
it is set, check_dst_limits_calc_pos_1 will recurse and try to find one
|
|
such node.
|
|
|
|
A backreference does not epsilon-transition unless it is empty, so set
|
|
to all zeros if FROM != TO. */
|
|
mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map
|
|
= (from == to ? ~0 : 0);
|
|
|
|
mctx->bkref_ents[mctx->nbkref_ents++].more = 0;
|
|
if (mctx->max_mb_elem_len < to - from)
|
|
mctx->max_mb_elem_len = to - from;
|
|
return REG_NOERROR;
|
|
}
|
|
|
|
/* Search for the first entry which has the same str_idx, or -1 if none is
|
|
found. Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX. */
|
|
|
|
static int
|
|
internal_function
|
|
search_cur_bkref_entry (const re_match_context_t *mctx, int str_idx)
|
|
{
|
|
int left, right, mid, last;
|
|
last = right = mctx->nbkref_ents;
|
|
for (left = 0; left < right;)
|
|
{
|
|
mid = (left + right) / 2;
|
|
if (mctx->bkref_ents[mid].str_idx < str_idx)
|
|
left = mid + 1;
|
|
else
|
|
right = mid;
|
|
}
|
|
if (left < last && mctx->bkref_ents[left].str_idx == str_idx)
|
|
return left;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
/* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches
|
|
at STR_IDX. */
|
|
|
|
static reg_errcode_t
|
|
internal_function
|
|
match_ctx_add_subtop (re_match_context_t *mctx, int node, int str_idx)
|
|
{
|
|
#ifdef DEBUG
|
|
assert (mctx->sub_tops != NULL);
|
|
assert (mctx->asub_tops > 0);
|
|
#endif
|
|
if (BE (mctx->nsub_tops == mctx->asub_tops, 0))
|
|
{
|
|
int new_asub_tops = mctx->asub_tops * 2;
|
|
re_sub_match_top_t **new_array = re_realloc (mctx->sub_tops,
|
|
re_sub_match_top_t *,
|
|
new_asub_tops);
|
|
if (BE (new_array == NULL, 0))
|
|
return REG_ESPACE;
|
|
mctx->sub_tops = new_array;
|
|
mctx->asub_tops = new_asub_tops;
|
|
}
|
|
mctx->sub_tops[mctx->nsub_tops] = calloc (1, sizeof (re_sub_match_top_t));
|
|
if (BE (mctx->sub_tops[mctx->nsub_tops] == NULL, 0))
|
|
return REG_ESPACE;
|
|
mctx->sub_tops[mctx->nsub_tops]->node = node;
|
|
mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx;
|
|
return REG_NOERROR;
|
|
}
|
|
|
|
/* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches
|
|
at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP. */
|
|
|
|
static re_sub_match_last_t *
|
|
internal_function
|
|
match_ctx_add_sublast (re_sub_match_top_t *subtop, int node, int str_idx)
|
|
{
|
|
re_sub_match_last_t *new_entry;
|
|
if (BE (subtop->nlasts == subtop->alasts, 0))
|
|
{
|
|
int new_alasts = 2 * subtop->alasts + 1;
|
|
re_sub_match_last_t **new_array = re_realloc (subtop->lasts,
|
|
re_sub_match_last_t *,
|
|
new_alasts);
|
|
if (BE (new_array == NULL, 0))
|
|
return NULL;
|
|
subtop->lasts = new_array;
|
|
subtop->alasts = new_alasts;
|
|
}
|
|
new_entry = calloc (1, sizeof (re_sub_match_last_t));
|
|
if (BE (new_entry != NULL, 1))
|
|
{
|
|
subtop->lasts[subtop->nlasts] = new_entry;
|
|
new_entry->node = node;
|
|
new_entry->str_idx = str_idx;
|
|
++subtop->nlasts;
|
|
}
|
|
return new_entry;
|
|
}
|
|
|
|
static void
|
|
internal_function
|
|
sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts,
|
|
re_dfastate_t **limited_sts, int last_node, int last_str_idx)
|
|
{
|
|
sctx->sifted_states = sifted_sts;
|
|
sctx->limited_states = limited_sts;
|
|
sctx->last_node = last_node;
|
|
sctx->last_str_idx = last_str_idx;
|
|
re_node_set_init_empty (&sctx->limits);
|
|
}
|