mirror of
https://github.com/git/git.git
synced 2024-11-01 06:47:52 +01:00
22d87333e5
The problem solved by the code introduced in this commit goes like this: given two sets of items, and a cost matrix which says how much it "costs" to assign any given item of the first set to any given item of the second, assign all items (except when the sets have different size) in the cheapest way. We use the Jonker-Volgenant algorithm to solve the assignment problem to answer questions such as: given two different versions of a topic branch (or iterations of a patch series), what is the best pairing of commits/patches between the different versions? Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
201 lines
4 KiB
C
201 lines
4 KiB
C
/*
|
|
* Based on: Jonker, R., & Volgenant, A. (1987). <i>A shortest augmenting path
|
|
* algorithm for dense and sparse linear assignment problems</i>. Computing,
|
|
* 38(4), 325-340.
|
|
*/
|
|
#include "cache.h"
|
|
#include "linear-assignment.h"
|
|
|
|
#define COST(column, row) cost[(column) + column_count * (row)]
|
|
|
|
/*
|
|
* The parameter `cost` is the cost matrix: the cost to assign column j to row
|
|
* i is `cost[j + column_count * i].
|
|
*/
|
|
void compute_assignment(int column_count, int row_count, int *cost,
|
|
int *column2row, int *row2column)
|
|
{
|
|
int *v, *d;
|
|
int *free_row, free_count = 0, saved_free_count, *pred, *col;
|
|
int i, j, phase;
|
|
|
|
memset(column2row, -1, sizeof(int) * column_count);
|
|
memset(row2column, -1, sizeof(int) * row_count);
|
|
ALLOC_ARRAY(v, column_count);
|
|
|
|
/* column reduction */
|
|
for (j = column_count - 1; j >= 0; j--) {
|
|
int i1 = 0;
|
|
|
|
for (i = 1; i < row_count; i++)
|
|
if (COST(j, i1) > COST(j, i))
|
|
i1 = i;
|
|
v[j] = COST(j, i1);
|
|
if (row2column[i1] == -1) {
|
|
/* row i1 unassigned */
|
|
row2column[i1] = j;
|
|
column2row[j] = i1;
|
|
} else {
|
|
if (row2column[i1] >= 0)
|
|
row2column[i1] = -2 - row2column[i1];
|
|
column2row[j] = -1;
|
|
}
|
|
}
|
|
|
|
/* reduction transfer */
|
|
ALLOC_ARRAY(free_row, row_count);
|
|
for (i = 0; i < row_count; i++) {
|
|
int j1 = row2column[i];
|
|
if (j1 == -1)
|
|
free_row[free_count++] = i;
|
|
else if (j1 < -1)
|
|
row2column[i] = -2 - j1;
|
|
else {
|
|
int min = COST(!j1, i) - v[!j1];
|
|
for (j = 1; j < column_count; j++)
|
|
if (j != j1 && min > COST(j, i) - v[j])
|
|
min = COST(j, i) - v[j];
|
|
v[j1] -= min;
|
|
}
|
|
}
|
|
|
|
if (free_count ==
|
|
(column_count < row_count ? row_count - column_count : 0)) {
|
|
free(v);
|
|
free(free_row);
|
|
return;
|
|
}
|
|
|
|
/* augmenting row reduction */
|
|
for (phase = 0; phase < 2; phase++) {
|
|
int k = 0;
|
|
|
|
saved_free_count = free_count;
|
|
free_count = 0;
|
|
while (k < saved_free_count) {
|
|
int u1, u2;
|
|
int j1 = 0, j2, i0;
|
|
|
|
i = free_row[k++];
|
|
u1 = COST(j1, i) - v[j1];
|
|
j2 = -1;
|
|
u2 = INT_MAX;
|
|
for (j = 1; j < column_count; j++) {
|
|
int c = COST(j, i) - v[j];
|
|
if (u2 > c) {
|
|
if (u1 < c) {
|
|
u2 = c;
|
|
j2 = j;
|
|
} else {
|
|
u2 = u1;
|
|
u1 = c;
|
|
j2 = j1;
|
|
j1 = j;
|
|
}
|
|
}
|
|
}
|
|
if (j2 < 0) {
|
|
j2 = j1;
|
|
u2 = u1;
|
|
}
|
|
|
|
i0 = column2row[j1];
|
|
if (u1 < u2)
|
|
v[j1] -= u2 - u1;
|
|
else if (i0 >= 0) {
|
|
j1 = j2;
|
|
i0 = column2row[j1];
|
|
}
|
|
|
|
if (i0 >= 0) {
|
|
if (u1 < u2)
|
|
free_row[--k] = i0;
|
|
else
|
|
free_row[free_count++] = i0;
|
|
}
|
|
row2column[i] = j1;
|
|
column2row[j1] = i;
|
|
}
|
|
}
|
|
|
|
/* augmentation */
|
|
saved_free_count = free_count;
|
|
ALLOC_ARRAY(d, column_count);
|
|
ALLOC_ARRAY(pred, column_count);
|
|
ALLOC_ARRAY(col, column_count);
|
|
for (free_count = 0; free_count < saved_free_count; free_count++) {
|
|
int i1 = free_row[free_count], low = 0, up = 0, last, k;
|
|
int min, c, u1;
|
|
|
|
for (j = 0; j < column_count; j++) {
|
|
d[j] = COST(j, i1) - v[j];
|
|
pred[j] = i1;
|
|
col[j] = j;
|
|
}
|
|
|
|
j = -1;
|
|
do {
|
|
last = low;
|
|
min = d[col[up++]];
|
|
for (k = up; k < column_count; k++) {
|
|
j = col[k];
|
|
c = d[j];
|
|
if (c <= min) {
|
|
if (c < min) {
|
|
up = low;
|
|
min = c;
|
|
}
|
|
col[k] = col[up];
|
|
col[up++] = j;
|
|
}
|
|
}
|
|
for (k = low; k < up; k++)
|
|
if (column2row[col[k]] == -1)
|
|
goto update;
|
|
|
|
/* scan a row */
|
|
do {
|
|
int j1 = col[low++];
|
|
|
|
i = column2row[j1];
|
|
u1 = COST(j1, i) - v[j1] - min;
|
|
for (k = up; k < column_count; k++) {
|
|
j = col[k];
|
|
c = COST(j, i) - v[j] - u1;
|
|
if (c < d[j]) {
|
|
d[j] = c;
|
|
pred[j] = i;
|
|
if (c == min) {
|
|
if (column2row[j] == -1)
|
|
goto update;
|
|
col[k] = col[up];
|
|
col[up++] = j;
|
|
}
|
|
}
|
|
}
|
|
} while (low != up);
|
|
} while (low == up);
|
|
|
|
update:
|
|
/* updating of the column pieces */
|
|
for (k = 0; k < last; k++) {
|
|
int j1 = col[k];
|
|
v[j1] += d[j1] - min;
|
|
}
|
|
|
|
/* augmentation */
|
|
do {
|
|
if (j < 0)
|
|
BUG("negative j: %d", j);
|
|
i = pred[j];
|
|
column2row[j] = i;
|
|
SWAP(j, row2column[i]);
|
|
} while (i1 != i);
|
|
}
|
|
|
|
free(col);
|
|
free(pred);
|
|
free(d);
|
|
free(v);
|
|
free(free_row);
|
|
}
|